Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36766532

RESUMEN

The impact that post-dilatation has on the risk of experiencing conduction disorders after post-transcatheter aortic valve replacement with self-expanding valves (SE-TAVR) is unclear. We compared the rate of developing an atrioventricular (AV) high-grade conduction disorder and permanent pacemaker implantation (PPI) in post-TAVR patients undergoing post-dilatation. We enrolled patients with severe symptomatic calcified aortic stenosis (CAS) who were undergoing SE-TAVR between 1 January 2016, and 19 April 2019 at a single French center. Of the 532 patients treated with SE-TAVR, 417 subjects (78.4%) received Corevalve Evolute R and 115 subjects (21.6%) received the latest-generation Corevalve Evolute Pro valve. In total, 104/532 patients (19.5%; 21.6% with Evolute R vs. 12.2% with Evolute Pro, p = 0.024) required post-dilatation. Evolut R was associated with an increased risk of post-dilatation (odds ratio 2.1 (1.01-4.33, p = 0.046)). We did not observe any post-dilatation increases in AV or in intra- and interventricular conduction disorders. In total, 26.1% of participants needed PPI within the first 30 post-procedure days (p = 0.449). Post-dilatation was not associated with a higher PPI risk (subdistribution hazard ratio 1.033 (0.726-1.471); p = 0.857). No significant differences existed between the groups in terms of one-year mortality (10.3%; p = 0.507). Post-dilatation in SE-TAVR did not increase the rate of electrical conduction disorders and PPI in the early implantation phase. The latest generation of SE-TAVR valves was associated with less need for post-dilatation.

2.
Clin Nutr ; 38(2): 806-811, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29525512

RESUMEN

BACKGROUND & AIMS: There is an increase in the number of patients worldwide with cardiac implantable electronic devices (CIEDs). Current medical practice guidelines warn against performing bioimpedance analysis (BIA) in this group of patients in order to avoid any electromagnetic interference. These recommendations restrict using the BIA in patients undergoing heart failure or with nutrition disorders in whom BIA could be of major interest in detecting peripheral congestion and to help guide treatment. The present study was conducted to evaluate whether BIA caused electromagnetic interference in patients having CIEDs. METHODS: Patient enrollment was conducted during routine face-to-face consultations for scheduled CIEDs interrogations. Device battery voltage, lead impedance, pacing thresholds and device electrograms were recorded before and after each BIA measurement to detect any electromagnetic interference or oversensing. RESULTS: A total of 200 patients were enrolled. During BIA, no significant changes in battery voltage, lead impedance or pacing thresholds were detected, nor were there any inappropriate over- or undersensing observed in intracardiac electrograms. Furthermore, 6- and 12-month follow-up did not reveal any changes in CIEDs. CONCLUSIONS: This study shows no interference in patients equipped with CIEDs and suggests that BIA can be securely performed in these patients. Trial registered under the identifier NCT03045822.


Asunto(s)
Desfibriladores Implantables/efectos adversos , Impedancia Eléctrica , Marcapaso Artificial/efectos adversos , Anciano , Anciano de 80 o más Años , Composición Corporal/fisiología , Impedancia Eléctrica/efectos adversos , Impedancia Eléctrica/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Seguridad del Paciente , Estudios Prospectivos
3.
Development ; 143(23): 4533-4542, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27899510

RESUMEN

Developmental patterning and tissue formation are regulated through complex gene regulatory networks (GRNs) driven through the action of transcription factors (TFs) converging on enhancer elements. Here, as a point of entry to dissect the poorly defined GRN underlying cardiomyocyte differentiation, we apply an integrated approach to identify active enhancers and TFs involved in Drosophila heart development. The Drosophila heart consists of 104 cardiomyocytes, representing less than 0.5% of all cells in the embryo. By modifying BiTS-ChIP for rare cells, we examined H3K4me3 and H3K27ac chromatin landscapes to identify active promoters and enhancers specifically in cardiomyocytes. These in vivo data were complemented by a machine learning approach and extensive in vivo validation in transgenic embryos, which identified many new heart enhancers and their associated TF motifs. Our results implicate many new TFs in late stages of heart development, including Bagpipe, an Nkx3.2 ortholog, which we show is essential for differentiated heart function.


Asunto(s)
Drosophila/embriología , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Corazón/embriología , Miocitos Cardíacos/citología , Organogénesis/genética , Regiones Promotoras Genéticas/genética , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Cromatina , Drosophila/genética , Redes Reguladoras de Genes/genética , Histonas/metabolismo , Organogénesis/fisiología , Factores de Transcripción/genética
4.
J Cardiovasc Dev Dis ; 3(1)2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-29367558

RESUMEN

Cardiovascular diseases and, among them, channelopathies and cardiomyopathies are a major cause of death worldwide. The molecular and genetic defects underlying these cardiac disorders are complex, leading to a large range of structural and functional heart phenotypes. Identification of molecular and functional mechanisms disrupted by mutations causing channelopathies and cardiomyopathies is essential to understanding the link between an altered gene and clinical phenotype. The development of animal models has been proven to be efficient for functional studies in channelopathies and cardiomyopathies. In particular, the Drosophila model has been largely applied for deciphering the molecular and cellular pathways affected in these inherited cardiac disorders and for identifying their genetic modifiers. Here we review the utility and the main contributions of the fruitfly models for the better understanding of channelopathies and cardiomyopathies. We also discuss the investigated pathological mechanisms and the discoveries of evolutionarily conserved pathways which reinforce the value of Drosophila in modeling human cardiac diseases.

5.
Development ; 142(5): 994-1005, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25715399

RESUMEN

Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture.


Asunto(s)
Proteínas de Drosophila/metabolismo , Corazón/embriología , Proteínas de Choque Térmico Pequeñas/metabolismo , Músculos/embriología , Músculos/metabolismo , Animales , Drosophila , Proteínas de Drosophila/genética , Filaminas/genética , Filaminas/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Choque Térmico Pequeñas/genética , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología
6.
Exp Gerontol ; 49: 26-34, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24231130

RESUMEN

Dystrophin-deficiency causes cardiomyopathies and shortens the life expectancy of Duchenne and Becker muscular dystrophy patients. Restoring Dystrophin expression in the heart by gene transfer is a promising avenue to explore as a therapy. Truncated Dystrophin gene constructs have been engineered and shown to alleviate dystrophic skeletal muscle disease, but their potential in preventing the development of cardiomyopathy is not fully understood. In the present study, we found that either the mechanical or the signaling functions of Dystrophin were able to reduce the dilated heart phenotype of Dystrophin mutants in a Drosophila model. Our data suggest that Dystrophin retains some function in fly cardiomyocytes in the absence of a predicted mechanical link to the cytoskeleton. Interestingly, cardiac-specific manipulation of nitric oxide synthase expression also modulates cardiac function, which can in part be reversed by loss of Dystrophin function, further implying a signaling role of Dystrophin in the heart. These findings suggest that the signaling functions of Dystrophin protein are able to ameliorate the dilated cardiomyopathy, and thus might help to improve heart muscle function in micro-Dystrophin-based gene therapy approaches.


Asunto(s)
Cardiomiopatía Dilatada/prevención & control , Drosophila/genética , Distrofina/fisiología , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Animales Modificados Genéticamente , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Drosophila/metabolismo , Distroglicanos/fisiología , Distrofina/deficiencia , Distrofina/genética , Terapia Genética/métodos , Mutación , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa/fisiología , Transducción de Señal/fisiología
7.
J Cardiovasc Electrophysiol ; 23(3): 309-18, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21985309

RESUMEN

INTRODUCTION: Understanding sinoatrial node (SAN) development could help in developing therapies for SAN dysfunction. However, electrophysiological investigation of SAN development remains difficult because mutant mice with SAN dysfunctions are frequently embryonically lethal. Most research on SAN development is therefore limited to immunocytochemical observations without comparable functional studies. METHODS AND RESULTS: We applied a multielectrode array (MEA) recording system to study SAN development in mouse hearts acutely isolated at embryonic ages (E) 8.5-12.5 days. Physiological heart rates were routinely restored, enabling accurate functional assessment of SAN development. We found that dominant pacemaking activity originated from the left inflow tract (LIFT) region at E8.5, but switched to the right SAN by E12.5. Combining MEA recordings and pharmacological agents, we show that intracellular calcium (Ca(2+))-mediated automaticity develops early and is the major mechanism of pulse generation in the LIFT of E8.5 hearts. Later in development at E12.5, sarcolemmal ion channels develop in the SAN at a time when pacemaker channels are down-regulated in the LIFT, leading to a switch in the dominant pacemaker location. Additionally, low micromolar concentrations of tetrodotoxin (TTX), a sodium channel blocker, minimally affect pacemaker rhythm at E8.5-E12.5, but suppress atrial activation and reveal a TTX-resistant SAN-atrioventricular node (internodal) pathway that mediates internodal conduction in E12.5 hearts. CONCLUSIONS: Using a physiological mapping method, we demonstrate that differential mechanistic development of automaticity between the left and right inflow tract regions confers the pacemaker location switch. Moreover, a TTX-resistant pathway mediates preferential internodal conduction in E12.5 mouse hearts.


Asunto(s)
Nodo Atrioventricular/fisiología , Relojes Biológicos/fisiología , Fenómenos Electrofisiológicos , Sistema de Conducción Cardíaco/embriología , Sistema de Conducción Cardíaco/fisiología , Corazón/embriología , Nodo Sinoatrial/fisiología , Algoritmos , Animales , Nodo Atrioventricular/efectos de los fármacos , Nodo Atrioventricular/embriología , Relojes Biológicos/efectos de los fármacos , Compuestos de Boro/farmacología , Señalización del Calcio/fisiología , Femenino , Sistema de Conducción Cardíaco/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación in Situ , Técnicas In Vitro , Canales Iónicos/efectos de los fármacos , Canales Iónicos/fisiología , Potenciales de la Membrana/fisiología , Ratones , Embarazo , Rianodina/farmacología , Sarcolema/efectos de los fármacos , Sarcolema/metabolismo , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/embriología , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
8.
PLoS Genet ; 7(11): e1002344, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22072978

RESUMEN

A significant current challenge in human genetics is the identification of interacting genetic loci mediating complex polygenic disorders. One of the best characterized polygenic diseases is Down syndrome (DS), which results from an extra copy of part or all of chromosome 21. A short interval near the distal tip of chromosome 21 contributes to congenital heart defects (CHD), and a variety of indirect genetic evidence suggests that multiple candidate genes in this region may contribute to this phenotype. We devised a tiered genetic approach to identify interacting CHD candidate genes. We first used the well vetted Drosophila heart as an assay to identify interacting CHD candidate genes by expressing them alone and in all possible pairwise combinations and testing for effects on rhythmicity or heart failure following stress. This comprehensive analysis identified DSCAM and COL6A2 as the most strongly interacting pair of genes. We then over-expressed these two genes alone or in combination in the mouse heart. While over-expression of either gene alone did not affect viability and had little or no effect on heart physiology or morphology, co-expression of the two genes resulted in ≈50% mortality and severe physiological and morphological defects, including atrial septal defects and cardiac hypertrophy. Cooperative interactions between DSCAM and COL6A2 were also observed in the H9C2 cardiac cell line and transcriptional analysis of this interaction points to genes involved in adhesion and cardiac hypertrophy. Our success in defining a cooperative interaction between DSCAM and COL6A2 suggests that the multi-tiered genetic approach we have taken involving human mapping data, comprehensive combinatorial screening in Drosophila, and validation in vivo in mice and in mammalian cells lines should be applicable to identifying specific loci mediating a broad variety of other polygenic disorders.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Colágeno Tipo VI/genética , Cardiopatías Congénitas/genética , Herencia Multifactorial , Animales , Adhesión Celular/genética , Moléculas de Adhesión Celular/genética , Línea Celular , Cromosomas Humanos Par 21/genética , Colágeno Tipo VI/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Corazón/anatomía & histología , Corazón/fisiología , Humanos , Ratones , Ratones Transgénicos , Miocardio/metabolismo , Fenotipo
9.
J Cell Biol ; 193(7): 1181-96, 2011 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-21690310

RESUMEN

Unraveling the gene regulatory networks that govern development and function of the mammalian heart is critical for the rational design of therapeutic interventions in human heart disease. Using the Drosophila heart as a platform for identifying novel gene interactions leading to heart disease, we found that the Rho-GTPase Cdc42 cooperates with the cardiac transcription factor Tinman/Nkx2-5. Compound Cdc42, tinman heterozygous mutant flies exhibited impaired cardiac output and altered myofibrillar architecture, and adult heart-specific interference with Cdc42 function is sufficient to cause these same defects. We also identified K(+) channels, encoded by dSUR and slowpoke, as potential effectors of the Cdc42-Tinman interaction. To determine whether a Cdc42-Nkx2-5 interaction is conserved in the mammalian heart, we examined compound heterozygous mutant mice and found conduction system and cardiac output defects. In exploring the mechanism of Nkx2-5 interaction with Cdc42, we demonstrated that mouse Cdc42 was a target of, and negatively regulated by miR-1, which itself was negatively regulated by Nkx2-5 in the mouse heart and by Tinman in the fly heart. We conclude that Cdc42 plays a conserved role in regulating heart function and is an indirect target of Tinman/Nkx2-5 via miR-1.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/fisiología , Corazón/fisiología , Proteínas de Homeodominio/fisiología , MicroARNs/fisiología , Proteínas Represoras/fisiología , Transactivadores/fisiología , Factores de Transcripción/fisiología , Proteína de Unión al GTP cdc42/metabolismo , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/fisiología , Regulación del Desarrollo de la Expresión Génica , Cardiopatías/genética , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Humanos , Ratones , Contracción Miocárdica/genética , Miocardio/metabolismo , Miocitos Cardíacos/citología , Proteínas Represoras/genética , Transactivadores/genética , Factores de Transcripción/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/fisiología , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/fisiología
10.
J Vis Exp ; (32)2009 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-19826399

RESUMEN

The Drosophila melanogaster dorsal vessel, or heart, is a tubular structure comprised of a single layer of contractile cardiomyocytes, pericardial cells that align along each side of the heart wall, supportive alary muscles and, in adults, a layer of ventral longitudinal muscle cells. The contractile fibers house conserved constituents of the muscle cytoarchitecture including densely packed bundles of myofibrils and cytoskeletal/submembranous protein complexes, which interact with homologous components of the extracellular matrix. Here we describe a protocol for the fixation and the fluorescent labeling of particular myocardial elements from the hearts of dissected larvae and semi-intact adult Drosophila. Specifically, we demonstrate the labeling of sarcomeric F-actin and of alpha-actinin in larval hearts. Additionally, we perform labeling of F-actin and alpha-actinin in myosin-GFP expressing adult flies and of alpha-actinin and pericardin, a type IV extracellular matrix collagen, in wild type adult hearts. Particular attention is given to a mounting strategy for semi-intact adult hearts that minimizes handling and optimizes the opportunity for maintaining the integrity of the cardiac tubes and the associated tissues. These preparations are suitable for imaging via fluorescent and confocal microscopy. Overall, this procedure allows for careful and detailed analysis of the structural characteristics of the heart from a powerful genetically tractable model system.


Asunto(s)
Drosophila/anatomía & histología , Colorantes Fluorescentes/metabolismo , Corazón/anatomía & histología , Actinas/análisis , Actinas/metabolismo , Animales , Drosophila/química , Drosophila/metabolismo , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Miocardio/química , Miocardio/metabolismo
11.
Dev Genes Evol ; 218(6): 321-32, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18504607

RESUMEN

Variations in Hox protein sequences and functions have been proposed to contribute to evolutionary changes in appendage shape and number in crustaceans and insects. One model is that insect Hox proteins of the Ultrabithorax (UBX) ortholog class evolved increased abilities to repress Distal-less (Dll) transcription and appendage development in part through the loss of serine and threonine residues in casein kinase 2 (CK2) phosphorylation sites. To explore this possibility, we constructed and tested the appendage repression function of chimeric proteins with insertions of different CK2 consensus sites or phosphomimetics of CK2 sites in C-terminal regions of Drosophila melanogaster UBX. Our results indicate that CK2 sites C-terminal to the homeodomain can inhibit the appendage repression functions of UBX proteins, but only in the context of specific amino acid sequences. Our results, combined with previous findings on evolutionary changes in Hox protein, suggest how intra-protein regulatory changes can diversify Hox protein function, and thus animal morphology.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Sitios de Unión , Tipificación del Cuerpo/genética , Quimera/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Datos de Secuencia Molecular , Fosforilación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Tórax/embriología , Factores de Transcripción/genética
12.
Aging Cell ; 7(2): 237-49, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18221418

RESUMEN

A number of studies have been conducted recently on the model organism Drosophila to determine the function of genes involved in human disease, including those implicated in neurological disorders, cancer and metabolic and cardiovascular diseases. The simple structure and physiology of the Drosophila heart tube together with the available genetics provide a suitable in vivo assay system for studying cardiac gene functions. In our study, we focus on analysis of the role of dystrophin (Dys) in heart physiology. As in humans, the Drosophila dys gene encodes multiple isoforms, of which the large isoforms (DLPs) and a truncated form (Dp117) are expressed in the adult heart. Here, we show that the loss of dys function in the heart leads to an age-dependent disruption of the myofibrillar organization within the myocardium as well as to alterations in cardiac performance. dys RNAi-mediated knockdown in the mesoderm also shortens lifespan. Knockdown of all or deletion of the large isoforms increases the heart rate by shortening the diastolic intervals (relaxation phase) of the cardiac cycle. Morphologically, loss of the large DLPs isoforms causes a widening of the cardiac tube and a lower fractional shortening, a phenotype reminiscent of dilated cardiomyopathy. The dilated dys mutant phenotype was reversed by expressing a truncated mammalian form of dys (Dp116). Our results illustrate the utility of Drosophila as a model system to study dilated cardiomyopathy and other muscular-dystrophy-associated phenotypes.


Asunto(s)
Cardiomiopatía Dilatada/mortalidad , Cardiomiopatía Dilatada/fisiopatología , Drosophila/metabolismo , Distrofina/deficiencia , Longevidad , Factores de Edad , Animales , Cardiomiopatía Dilatada/genética , Modelos Animales de Enfermedad , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Distrofina/genética , Cardiopatías Congénitas/mortalidad , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/fisiopatología , Frecuencia Cardíaca , Longevidad/genética , Distrofia Muscular Animal/congénito , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología , Contracción Miocárdica , Miocitos Cardíacos/patología , Miofibrillas/genética , Miofibrillas/patología , Fenotipo , Isoformas de Proteínas , Eliminación de Secuencia
13.
J Exp Biol ; 211(Pt 1): 15-23, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18083727

RESUMEN

Muscle LIM protein (MLP) is a cytoskeletal protein located at the Z-disc of sarcomeres. Mutations in the human MLP gene are associated with hypertrophic and dilated cardiomyopathy. MLP has been proposed to be a key player in the stretch-sensing response, but the molecular mechanisms underlying its function in normal and diseased cardiac muscle have not been established. A Drosophila homolog, Mlp84B, displays a similar subcellular localization at the Z-disc of sarcomeres throughout development and in the adult, suggesting Drosophila as a model to study MLP function. Here we employed genetic ablation and cardiac-specific RNA interference (RNAi) knockdown of mlp84B to investigate its role in heart function. We found that Mlp84B-deficient or heart-specific RNAi knockdown flies exhibit diastolic interval prolongation, heart rhythm abnormalities and a reduced lifespan, while showing no obvious structural phenotype. Our data demonstrate that Mlp84B is essential for normal cardiac function and establish the Drosophila model for the investigation of the mechanisms connecting defective cardiac Z-disc components to the development of cardiomyopathy.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Corazón/fisiología , Proteínas Musculares/metabolismo , Actinina/metabolismo , Secuencia de Aminoácidos , Animales , Diástole , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Corazón/embriología , Proteínas con Dominio LIM , Longevidad , Datos de Secuencia Molecular , Mortalidad , Proteínas Musculares/química , Proteínas Musculares/deficiencia , Miocardio/citología , Miocardio/metabolismo , Miofibrillas/metabolismo , Especificidad de Órganos , Transporte de Proteínas , Sarcómeros/metabolismo
14.
Dev Biol ; 307(1): 142-51, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17524390

RESUMEN

teashirt (tsh) encodes a zinc-finger protein that is thought to be part of a network that contributes to regionalization of the Drosophila embryo and establishes the domains of Hox protein function. tsh and the Hox gene Sex combs reduced (Scr) are essential to establish the identity of the first thoracic segment. We used the development of the first thoracic segment as a paradigm for Scr dependent regional morphological distinctions. In this specific context, we asked whether Tsh protein could have a direct influence on Scr activity. Here we present evidence that Tsh interacts directly with Scr and this interaction depends in part on the presence of a short domain located in the N-terminal half of Teashirt called "acidic domain". In vivo, expression of full length Tsh can rescue the tsh null phenotype throughout the trunk whereas Tsh lacking the Scr interacting domain rescues all the trunk defects except in the prothorax. We suggest this provides insights into the mechanism by which Tsh, in concert with Scr, specifies the prothoracic identity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Represoras/metabolismo , Tórax/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Drosophila , Morfogénesis , Tórax/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...