Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 35(19)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38306966

RESUMEN

A straightforward method to prepare surface enhanced Raman spectroscopy (SERS) chips containing a monolayer of silver coated gold nanostars (GNS@Ag) grafted on a glass surface is introduced. The synthetic approach is based on a seed growth method performed directly on surface, using GNS as seeds, and involving a green pathway, which only uses silver nitate, ascorbic acid and water, to grow the silver shell. The preparation was optimized to maximize signals obtaining a SERS response of one order of magnitude greater than that from the original GNS based chips, offering in the meantime good homogeneity and acceptable reproducibility. The proposed GNS@Ag SERS chips are able to detect pesticide thiram down to 20 ppb.

2.
ACS Appl Bio Mater ; 7(1): 131-143, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38079569

RESUMEN

Smart materials with controlled stimuli-responsive functions are at the forefront of technological development. In this work, we present a generic strategy that combines simple components, physicochemical responses, and easy fabrication methods to achieve a dual stimuli-responsive system capable of location-specific antimicrobial cargo delivery. The encapsulated system is fabricated by combining a biocompatible inert polymeric matrix of poly(dimethylsiloxane) (PDMS) and a bioactive cargo of saturated fatty acids. We demonstrate the effectiveness of our approach to deliver antimicrobial activity for the model bacteria Escherichia coli. The system responds to two control variables, temperature and pH, delivering two levels of antimicrobial response under distinct combinations of stimuli: one response toward the planktonic media and another response directly at the surface for sessile bacteria. Spatially resolved Raman spectroscopy alongside thermal and structural material analysis reveals that the system not only exhibits ON/OFF states but can also control relocation and targeting of the active cargo toward either the surface or the liquid media, leading to different ON/OFF states for the planktonic and sessile bacteria. The approach proposed herein is technologically simple and scalable, facing low regulatory barriers within the food and healthcare sectors by using approved components and relying on fundamental chemical processes. Our results also provide a proof-of-concept platform for the design and easy fabrication of delivery systems capable of operating as Boolean logic gates, delivering different responses under different environmental conditions.


Asunto(s)
Productos Biológicos , Temperatura , Polímeros/química , Escherichia coli , Concentración de Iones de Hidrógeno
3.
J Am Chem Soc ; 145(48): 26122-26132, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37984877

RESUMEN

Decoration of semiconductor photocatalysts with cocatalysts is generally done by a step-by-step assembly process. Here, we describe the self-assembling and self-activating nature of a photocatalytic system that forms under illumination of reduced anatase TiO2 nanoparticles in an aqueous Ni2+ solution. UV illumination creates in situ a Ni+/TiO2/Ti3+ photocatalyst that self-activates and, over time, produces H2 at a higher rate. In situ X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy show that key to self-assembly and self-activation is the light-induced formation of defects in the semiconductor, which enables the formation of monovalent nickel (Ni+) surface states. Metallic nickel states, i.e., Ni0, do not form under the dark (resting state) or under illumination (active state). Once the catalyst is assembled, the Ni+ surface states act as electron relay for electron transfer to form H2 from water, in the absence of sacrificial species or noble metal cocatalysts.

4.
Colloids Surf B Biointerfaces ; 227: 113373, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37257303

RESUMEN

Prussian blue (PB) is a coordination polymer based on the Fe2+…CN…Fe3+ sequence. It is an FDA-approved drug, intended for oral use at the acidic pH of the stomach and of most of the intestine track. However, based on FDA approval, a huge number of papers proposed the use of PB nanoparticles (PBnp) under "physiological conditions", meaning pH buffered at 7.4 and high saline concentration. While most of these papers report that PBnp are stable at this pH, a small number of papers describes instead PBnp degradation at the same or similar pH values, i.e. in the 7-8 range. Here we give a definitively clear picture: PBnp are intrinsically unstable at pH ≥ 7, degrading with the fast disappearance of their 700 nm absorption band, due to the formation of OH- complexes from the labile Fe3+ centers. However, we show also that the presence of a polymeric coating (PVP) can protect PBnp at pH 7.4 for over 24 h. Moreover, we demonstrate that when "physiological conditions" include serum, a protein corona is rapidly formed on PBnp, efficiently avoiding degradation. We also show that the viability of PBnp-treated EA.hy926, NCI-H1299, and A549 cells is not affected in a wide range of conditions that either prevent or promote PBnp degradation.


Asunto(s)
Nanopartículas , Nanopartículas/química , Ferrocianuros/química , Concentración de Iones de Hidrógeno
5.
Molecules ; 28(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37241766

RESUMEN

A synthetic approach has been developed to prepare silica gel monoliths that embed well separated silver or gold spherical nanoparticles (NP), with diameters of 8, 18 and 115 nm. Fe3+, O2/cysteine and HNO3 were all successfully used to oxidize and remove silver NP from silica, while aqua regia was necessary for gold NP. In all cases, NP-imprinted silica gel materials were obtained, with spherical voids of the same dimensions of the dissolved particles. By grinding the monoliths, we prepared NP-imprinted silica powders that were able to efficiently reuptake silver ultrafine NP (Ag-ufNP, d = 8 nm) from aqueous solutions. Moreover, the NP-imprinted silica powders showed a remarkable size selectivity, based on the best match between NP radius and the curvature radius of the cavities, driven by the optimization of attractive Van der Waals forces between SiO2 and NP. Ag-ufNP are increasingly used in products, goods, medical devices, disinfectants, and their consequent diffusion in the environment is of rising concern. Although limited here to a proof-of-concept level, the materials and methods described in this paper may be an efficient solution for capturing Ag-ufNP from environmental waters and to safely dispose them.

6.
Dalton Trans ; 52(2): 452-460, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36525102

RESUMEN

Prussian Blue (PB) is an inexpensive, biocompatible, photothermally active material. In this paper, self-assembled monolayers of PB nanoparticles were grafted on a glass surface, protected with a thin layer of silica and decorated with spherical silver nanoparticles. This combination of a photothermally active nanomaterial, PB, and an intrinsically antibacterial one, silver, leads to a versatile coating that can be used for medical devices and implants. The intrinsic antibacterial action of nanosilver, always active over time, can be enhanced on demand by switching on the photothermal effect of PB using near infrared (NIR) radiation, which has a good penetration depth through tissues and low side effects. Glass surfaces functionalized by this layer-by-layer approach have been characterized for their morphology and composition, and their intrinsic and photothermal antibacterial effect was studied against Gram+ and Gram- planktonic bacteria.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Plata/farmacología , Ferrocianuros/farmacología , Antibacterianos/farmacología , Materiales Biocompatibles
7.
Nanomaterials (Basel) ; 12(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296798

RESUMEN

Surface-enhanced Raman scattering (SERS) is becoming widely used as an analytical tool, and the search for stable and highly responsive SERS substrates able to give ultralow detection of pollutants is a current challenge. In this paper we boosted the SERS response of Gold nanostars (GNS) demonstrating that their coating with a layer of silver having a proper thickness produces a 7-fold increase in SERS signals. Glass supported monolayers of these GNS@Ag were then prepared using simple alcoxyliane chemistry, yielding efficient and reproducible SERS chips, which were tested for the detection of molecules representative of different classes of pollutants. Among them, norfloxacin was detected down to 3 ppb, which is one of the lowest limits of detection obtained with this technique for the analyte.

8.
Molecules ; 27(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36080495

RESUMEN

In this paper, we report on the preparation of Imidazole-functionalized glass surfaces, demonstrating the ability of a dinuclear Cu(II) complex of a macrocyclic ligand to give a "cascade" interaction with the deprotonated forms of grafted imidazole moieties. In this way, we realized a prototypal example of an antimicrobial surface based on a supramolecular approach, obtaining a neat microbicidal effect using low amounts of the described copper complex.


Asunto(s)
Antibacterianos , Cobre , Antibacterianos/farmacología , Vidrio , Imidazoles/farmacología , Ligandos
9.
Chemistry ; 28(26): e202200462, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35234313

RESUMEN

A radical anion -NO2 .- is formed upon an electrochemically reversible one-electron reduction of the square-planar NiII complex of N-nitrobenzylcyclam. The -NO2 .- group goes to occupy an axial position of the metal ion, thus establishing a significant electronic interaction with the metal center. In particular, the ESR spectrum supports the occurrence of an electron transfer from -NO2 .- to the metal, which therefore presents a significant NiI character. On re-oxidation, the nitrobenzyl side chain detaches and the NiII complex is restored, providing an example of a fully reversible redox driven intramolecular motion.

10.
Molecules ; 27(2)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35056719

RESUMEN

BACKGROUND: Macroaggregated human serum albumin (MAA) properties are widely used in nuclear medicine, labelled with 99mTc. The aim of this study is to improve the knowledge about the morphology, size, dimension and physical-chemical characteristics of MAA and their bond with 99mTc and 68Ga. METHODS: Commercial kits of MAA (Pulmocis®) were used. Characterisation through experiments based on SEM, DLS and Stokes' Law were carried out. In vitro experiments for Langmuir isotherms and pH studies on radiolabelling were performed and the stability of the radiometal complex was verified through competition reactions. RESULTS: The study settles the MAA dimension within the range 43-51 µm. The Langmuir isotherm reveals for [99mTc]MAA: Bmax (46.32), h (2.36); for [68Ga]MAA: Bmax (44.54), h (0.893). Dual labelling reveals that MAA does not discriminate different radioisotopes. Experiments on pH placed the optimal pH for labelling with 99mTc at 6. CONCLUSION: Radiolabelling of MAA is possible with high efficiency. The nondiscriminatory MAA bonds make this drug suitable for radiolabelling with different radioisotopes or for dual labelling. This finding illustrates the need to continue investigating MAA chemical and physical characteristics to allow for secure labelling with different isotopes.


Asunto(s)
Radioisótopos de Galio
11.
Nanomaterials (Basel) ; 11(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34947603

RESUMEN

Bacteria infections and related biofilms growth on surfaces of medical devices are a serious threat to human health. Controlled hyperthermia caused by photothermal effects can be used to kill bacteria and counteract biofilms formation. Embedding of plasmonic nano-objects like gold nanostars (GNS), able to give an intense photothermal effect when irradiated in the NIR, can be a smart way to functionalize a transparent and biocompatible material like polydimethylsiloxane (PDMS). This process enables bacteria destruction on surfaces of PDMS-made medical surfaces, an action which, in principle, can also be exploited in subcutaneous devices. We prepared stable and reproducible thin PDMS films containing controllable quantities of GNS, enabling a temperature increase that can reach more than 40 degrees. The hyperthermia exerted by this hybrid material generates an effective thermal microbicidal effect, killing bacteria with a near infrared (NIR) laser source with irradiance values that are safe for skin.

12.
Chemistry ; 27(62): 15361-15374, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34406677

RESUMEN

The photothermal properties of nanoparticles (NPs), that is, their ability to convert absorbed light into heat, have been studied since the end of the last century, mainly on gold NPs. In the new millennium, these studies have developed into a burst of research dedicated to the photothermal ablation of tumors. However, beside this strictly medical theme, research has also flourished in the connected areas of photothermal antibacterial surface coatings, gels and polymers, of photothermal surfaces for cell stimulation, as well as in purely technological areas that do not involve medical biotechnology. These include the direct conversion of solar light into heat, a more efficient sun-powered generation of steam and the use of inkjet-printed patterns of photothermal NPs for anticounterfeit printing based on temperature reading, to cite but a few. After an analysis of the photothermal effect (PTE) and its mechanism, this minireview briefly considers the antitumor-therapy theme and takes an in-depth look at all the other technological and biomedical applications of the PTE, paying particular attention to photothermal materials whose NPs have joined those based on Au.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Oro , Calor , Polímeros , Temperatura
13.
Nanomaterials (Basel) ; 11(6)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070273

RESUMEN

PVA films with embedded either silver nanoparticles (AgNP), NIR-absorbing photothermal gold nanostars (GNS), or mixed AgNP+GNS were prepared in this research. The optimal conditions to obtain stable AgNP+GNS films with intact, long lasting photothermal GNS were obtained. These require coating of GNS with a thiolated polyethylene glycol (PEG) terminated with a carboxylic acid function, acting as reticulant in the film formation. In the mixed AgNP+GNS films, the total noble metal content is <0.15% w/w and in the Ag films < 0.025% w/w. The slow but prolonged Ag+ release from film-embedded AgNP (8-11% of total Ag released after 24 h, in the mixed films) results in a very strong microbicidal effect against planktonic Escherichia coli and Staphylococcus aureus bacterial strains (the release of Au from films is instead negligible). Beside this intrinsic effect, the mixed films also exert an on-demand, fast hyperthermal bactericidal action, switched on by NIR laser irradiation (800 nm, i.e., inside the biotransparent window) of the localized surface plasmon resonance (LSPR) absorption bands of GNS. Temperature increases of 30 °C are obtained using irradiances as low as 0.27 W/cm2. Moreover, 80-90% death on both strains was observed in bacteria in contact with the GNS-containing films, after 30 min of irradiation. Finally, the biocompatibility of all films was verified on human fibroblasts, finding negligible viability decrease in all cases.

14.
Colloids Surf B Biointerfaces ; 204: 111800, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33945966

RESUMEN

In this work the quantification of antimicrobial properties of differently sized AgNPs immobilized on a surface was studied. Three different sizes of spheroidal AgNPs with a diameter of (6, 30 and 52) nm were synthetized and characterized with UV-vis, SEM, TEM and ICP-MS. The MIC (Minimal Inhibitory Concentration) and MBC (Minimal Bactericidal Concentration) against Escherichia coli were investigated. Then, the antibacterial efficacy (R) of amino-silanized glasses coated with different amounts of the three sizes of AgNPs were quantified by international standard ISO 22196 adapted protocol against E. coli, clarifying the relationship between size and antibacterial properties of immobilized AgNPs on a surface. The total amount of silver present on glasses with an R ∼ 6 for each AgNPs size was quantified with ICP-MS and this was considered the Surface MBC (SMBC), which were found to be (0.023, 0.026 and 0.034) µg/cm2 for (6, 30 and 52) nm AgNPs, respectively. Thus, this study demonstrates that active surfaces with a bactericidal effect at least ≥ 99.9999 % could be obtained using an amount of silver almost 100 times lower than the MBC found for colloidal AgNPs. The immobilization reduces the aggregation phenomena normally occuring in liquid media, maximizing the exposed specific superficial area of the AgNPs and their direct contact with bacterial cells. Starting from this glass model system, our work could broaden the way to the development of a wide range of antibacterial materials with very low amount of silver that can be safely applied in biomedical and food packaging fields.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos/farmacología , Escherichia coli , Pruebas de Sensibilidad Microbiana , Plata/farmacología
15.
Nanotechnology ; 32(29)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33831854

RESUMEN

SERS tags are a class of nanoparticles with great potential in advanced imaging experiments. The preparation of SERS tags however is complex, as they suffer from the high variability of the SERS signals observed even at the slightest sign of aggregation. Here, we developed a method for the preparation of SERS tags based on the use of gold nanostars conjugated with neutravidin. The SERS tags here obtained are extremely stable in all biological buffers commonly employed and can be prepared at a relatively large scale in very mild conditions. The obtained SERS tags have been used to monitor the expression of fibroblast activation protein alpha (FAP) on the membrane of primary fibroblasts obtained from patients affected by Crohn's disease. The SERS tags allowed the unambiguous identification of FAP on the surface of cells thus suggesting the feasibility of semi-quantitative analysis of the target protein. Moreover, the use of the neutravidin-biotin system allows to apply the SERS tags for any other marker detection, for example, different cancer cell types, simply by changing the biotinylated antibody chosen in the analysis.


Asunto(s)
Endopeptidasas/genética , Proteínas de la Membrana/genética , Nanopartículas del Metal/química , Miofibroblastos/metabolismo , Octoxinol/química , Espectrometría Raman/métodos , Avidina/química , Biotina/química , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Endopeptidasas/análisis , Endopeptidasas/metabolismo , Expresión Génica , Oro/química , Humanos , Íleon/metabolismo , Íleon/patología , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Nanopartículas del Metal/ultraestructura , Miofibroblastos/patología , Polietilenglicoles/química , Cultivo Primario de Células , Coloración y Etiquetado
16.
Beilstein J Nanotechnol ; 11: 1134-1146, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802716

RESUMEN

Bacterial contamination is a severe issue that affects medical devices, hospital tools and surfaces. When microorganisms adhere to a surface (e.g., medical devices or implants) they can develop into a biofilm, thereby becoming more resistant to conventional biocides and disinfectants. Nanoparticles can be used as an antibacterial agent in medical instruments or as a protective coating in implantable devices. In particular, attention is being drawn to photothermally active nanoparticles that are capable of converting absorbed light into heat. These nanoparticles can efficiently eradicate bacteria and biofilms upon light activation (predominantly near the infrared to near-infrared spectral region) due a rapid and pronounced local temperature increase. By using this approach new, protective, antibacterial surfaces and materials can be developed that can be remotely activated on demand. In this review, we summarize the state-of-the art regarding the application of various photothermally active nanoparticles and their corresponding nanocomposites for the light-triggered eradication of bacteria and biofilms.

17.
Molecules ; 25(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751978

RESUMEN

Silver nanoparticles were produced with AgF as the starting Ag(I) salt, with pectin as the reductant and protecting agent. While the obtained nanoparticles (pAgNP-F) have the same dimensional and physicochemical properties as those already described by us and obtained from AgNO3 and pectin (pAgNP-N), the silver nanoparticles from AgF display an increased antibacterial activity against E. coli PHL628 and Staphylococcus epidermidis RP62A (S. epidermidis RP62A), both as planktonic strains and as their biofilms with respect to pAgNP-N. In particular, a comparison of the antimicrobial and antibiofilm action of pAgNP-F has been carried out with pAgNP-N, pAgNP-N and added NaF, pure AgNO3, pure AgF, AgNO3 and added NaF and pure NaNO3 and NaF salts. By also measuring the concentration of the Ag+ cation released by pAgNP-F and pAgNP-N, we were able to unravel the separate contributions of each potential antibacterial agent, observing an evident synergy between p-AgNP and the F- anion: the F- anion increases the antibacterial power of the p-AgNP solutions even when F- is just 10 µM, a concentration at which F- alone (i.e., as its Na+ salt) is completely ineffective.


Asunto(s)
Antibacterianos/química , Biopelículas/efectos de los fármacos , Fluoruros/química , Nanopartículas del Metal/química , Compuestos de Plata/química , Plata/química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Plancton/efectos de los fármacos , Plancton/microbiología , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/fisiología
18.
Talanta ; 216: 120936, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32456888

RESUMEN

Seed-growth synthesis is a common strategy to prepare silver nanoplates, whose peculiar plasmonic features can be exploited for surface enhanced Raman scattering (SERS) applications. Here we describe the fabrication and characterization of SERS chips using a peculiar in situ seed growth method, yielding a dense layer of nano-objects directly on a glass slide. In this way, geometric features (i.e. shape and dimensions) of the nano-objects can be tuned by controlling the growth time, obtaining a high concentration of hot spots on the surface. In particular, the SERS response of four kinds of chips were investigated to define the best SERS configuration in terms of size of the silver nano-objects, excitation wavelength and homogeneity of the SERS response. Silver nano-plates with a seeded growth time of 60 min demonstrated remarkable results both in terms of plasmonic enhancement, with an enhancement factor (EF) of 2 × 105 using a 532 nm laser excitation, and good homogeneity of the SERS response with intra- and inter-maps RSD of 10% and 5%, respectively. In order to demonstrate application of these chips for real sample analysis, an analytical procedure for the detection of a model pesticide, i.e. thiram fungicide, was developed and applied to its detection on green apples peels. SERS measurements on 60 min seeded growth silver nano-plates chip coupled with a multivariate PLS approach demonstrated high accuracy and repeatability for thiram detection in food matrix within the European law limits.


Asunto(s)
Contaminación de Alimentos/análisis , Fungicidas Industriales/análisis , Nanopartículas del Metal/química , Semillas/crecimiento & desarrollo , Plata/metabolismo , Tiram/análisis , Calibración , Vidrio/química , Malus/química , Plata/química , Espectrometría Raman , Propiedades de Superficie
19.
Molecules ; 25(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471310

RESUMEN

When using gold nanoparticle (AuNP) inks for writing photothermal readable secure information, it is of utmost importance to obtain a sharp and stable shape of the localized surface plasmon resonance (LSPR) absorption bands in the prints. The T increase at a given irradiation wavelength (DTl) is the retrieved information when printed patterns are interrogated with a laser source. As DTl is proportional to the absorbance at the wavelength l, any enlargement or change of the absorbance peak shape in a printed pattern would lead to wrong or unreliable reading. With the aim of preparing AuNP inks suitable for inkjet printing of patterns with stable and reliable photothermal reading, we prepared liquid solutions of spherical AuNP coated with a series of different polymers and with or without additional dispersant. The optical stability of the inks and of the printed patterns were checked by monitoring the shape changes of the sharp LSPR absorption band of AuNP in the visible (lmax 519 nm) along weeks of ageing. AuNP coated with neutral polyethylenglycol thiols (HS-PEG) of mw 2000-20,000 showed a strong tendency to rapidly agglomerate in the dry prints. The close contact between agglomerated AuNP resulted in the loss of the pristine shape of the LSPR band, that flattened and enlarged with the further appearance of a second maximum in the Near IR, due to plasmon hybridization. The tendency to agglomerate was found directly proportional to the PEG mw. Addition of the ethylcellulose (EC) dispersant to inks resulted in an even stronger and faster tendency to LSPR peak shape deformation in the prints due to EC hydrophobicity, that induced AuNP segregation and promoted agglomeration. The introduction of a charge on the AuNP coating revelead to be the correct way to avoid agglomeration and obtain printed patterns with a sharp LSPR absorption band, stable with ageing. While the use of a simple PEG thiol with a terminal negative charge, HS-PEGCOO(-) (mw 3000), was not sufficient, overcoating with the positively charged polyallylamine hydrochloride (PAH) and further overcoating with the negatively charged polystyrene sulfonate (PSS) yielded AuNP@HS-PEGCOO(-)/PAH(+) and AuNP@HS-PEGCOO(-)/PAH(+)/PSS(-), both giving stable prints. With these inks we have shown that it is possible to write photothermally readable secure information. In particular, the generation of reliable three-wavelength photothemal barcodes has been demonstrated.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Polímeros/química , Resonancia por Plasmón de Superficie
20.
Nanomaterials (Basel) ; 10(2)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085548

RESUMEN

We developed an easy and reproducible synthetic method to graft a monolayer of copper sulfide nanoparticles (CuS NP) on glass and exploited their particular antibacterial features. Samples were fully characterized showing a good stability, a neat photo-thermal effect when irradiated in the Near InfraRed (NIR) region (in the so called "biological window"), and the ability to release controlled quantities of copper in water. The desired antibacterial activity is thus based on two different mechanisms: (i) slow and sustained copper release from CuS NP-glass samples, (ii) local temperature increase caused by a photo-thermal effect under NIR laser irradiation of CuS NP-glass samples. This behavior allows promising in vivo applications to be foreseen, ensuring a "static" antibacterial protection tailored to fight bacterial adhesion in the critical timescale of possible infection and biofilm formation. This can be reinforced, when needed, by a photo-thermal action switchable on demand by an NIR light.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...