Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Pharm Bull (Tokyo) ; 72(7): 711-730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39085079

RESUMEN

Although opioid analgesics are indispensable in treating pain, these drugs are accompanied by life-threatening side effects. While clinically relevant opioid drugs target the µ opioid receptor (MOR), a heterodimer between the MOR and the δ opioid receptor (DOR) has emerged as another target to develop safer analgesics. Although some heterodimer-preferring agonists have been reported so far, it is still difficult to activate the MOR/DOR heterodimer selectively in the presence of MOR or DOR monomers/homodimers. To gain insights to develop selective agonists for MOR/DOR, herein we prepared analogs of CYM51010, one of the reported heterodimer-preferring agonists, and collected structure-activity relationship information. We found that the ethoxycarbonyl group was needed for the activity for the heterodimer, although this group could be substituted with functional groups with similar sizes, such as an ethoxycarbonyl group. As for the acetylaminophenyl group, not a type of substituent, but rather a substituent located at a specific position (para-position) was essential for the activity. Changing the linker length between the acetylaminophenyl group and the piperidine moiety also had deleterious effects on the activity. On the other hand, the substitution of the acetylamino group with a trifluoroacetylamino group and the substitution of the phenethyl group with a benzyl group diminished the activities for the monomers/homodimers while keeping the activity for MOR/DOR, which enhanced the selectivity. Our findings herein will play an important role in developing selective agonists for MOR/DOR and for elucidating the physiological roles of this heterodimer in analgesic processes and in the establishment of side effects.


Asunto(s)
Receptores Opioides delta , Receptores Opioides mu , Relación Estructura-Actividad , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Humanos , Estructura Molecular , Animales , Analgésicos Opioides/química , Analgésicos Opioides/farmacología , Analgésicos Opioides/síntesis química , Relación Dosis-Respuesta a Droga , Cricetulus , Células CHO
2.
Molecules ; 28(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37836768

RESUMEN

In medicinal chemistry, the copper-catalyzed click reaction is used to prepare ligand candidates. This reaction is so clean that the bioactivities of the products can be determined without purification. Despite the advantages of this in situ screening protocol, the applicability of this method for transmembrane proteins has not been validated due to the incompatibility with copper catalysts. To address this point, we performed ligand screening for the µ, δ, and κ opioid receptors using this protocol. As we had previously reported the 7-azanorbornane skeleton as a privileged scaffold for the G protein-coupled receptors, we performed the click reactions between various 7-substituted 2-ethynyl-7-azanorbornanes and azides. Screening assays were performed without purification using the CellKeyTM system, and the putative hit compounds were re-synthesized and re-evaluated. Although the "hit" compounds for the µ and the δ receptors were totally inactive after purifications, three of the four "hits" for the κ receptor were true agonists for this receptor and also showed activities for the δ receptor. Although false positive/negative results exist as in other screening projects for soluble proteins, this in situ method is effective in identifying novel ligands for transmembrane proteins.


Asunto(s)
Cobre , Receptores Opioides kappa , Receptores Opioides kappa/metabolismo , Ligandos , Proteínas de la Membrana , Receptores Opioides mu/metabolismo , Analgésicos Opioides/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA