Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Biochem Biophys Res Commun ; 661: 28-33, 2023 06 18.
Article En | MEDLINE | ID: mdl-37086571

Dietary peptides potently stimulate glucagon-like peptide-1 (GLP-1) secretion, however, the underlying molecular mechanisms, such as structure-activity relationships and sensing mechanisms are only partly elucidated. In this study, we used a dipeptide library to identify dipeptides that potently stimulate GLP-1 release and to clarify the underlying structure-activity relationship. Murine enteroendocrine GLUTag cells were exposed to 339 dipeptides for 60 min, and the concentration of GLP-1 released into the supernatant was measured. Subsequently, selected dipeptides were examined for their reproducibility and dose responsiveness. In addition, we investigated the role of constituent amino acids in the secretion of GLP-1, and whether tripeptides containing the active dipeptide structures maintained their activity. In a concentration range of 1-5 mg/mL, twelve dipeptides had reproducible and concentration-dependent GLP-1-releasing activity. Among them, nine dipeptides (FY, KF, NI, PM, QL, QY, WF, WN, WY) were novel, with WY exhibiting the most potent activity. The reverse sequences and most free amino acids did not induce GLP-1 secretion, indicating that GLP-1-producing cells recognize the structure of each peptide to induce GLP-1 secretion. However, no apparent similarities were found between the active peptides. A comparison between the six tripeptides composed of F, W, and Y revealed the further potent tripeptides FWY and WYF, than WY. In the present study, a comprehensive analysis revealed nine novel dipeptides with high potential to stimulate GLP-1 secretion. Furthermore, the results indicate that 'WY' is a specific dipeptide sequence that potently stimulates GLP-1 secretion.


Enteroendocrine Cells , Glucagon-Like Peptide 1 , Mice , Animals , Glucagon-Like Peptide 1/metabolism , Reproducibility of Results , Cell Line , Enteroendocrine Cells/metabolism , Dipeptides/metabolism , Amino Acids/metabolism
2.
Int J Mol Sci ; 22(12)2021 Jun 21.
Article En | MEDLINE | ID: mdl-34205659

Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone released from enteroendocrine L cells in response to meal ingestion. GLP-1 receptor agonists and GLP-1 enhancers have been clinically employed to treat diabetes owing to their glucose-dependent insulin-releasing activity. The release of GLP-1 is primarily stimulated by macronutrients such as glucose and fatty acids, which are nutritionally indispensable; however, excessive intake of sugar and fat is responsible for the development of obesity and diabetes. Therefore, GLP-1 releasing food factors, such as dietary peptides and non-nutrients, are deemed desirable for improving glucose tolerance. Human and animal studies have revealed that dietary proteins/peptides have a potent effect on stimulating GLP-1 secretion. Studies in enteroendocrine cell models have shown that dietary peptides, amino acids, and phytochemicals, such as quercetin, can directly stimulate GLP-1 secretion. In our animal experiments, these food factors improved glucose metabolism and increased GLP-1 secretion. Furthermore, some dietary peptides not only stimulated GLP-1 secretion but also reduced plasma peptidase activity, which is responsible for GLP-1 inactivation. Herein, we review the relationship between GLP-1 and food factors, especially dietary peptides and flavonoids. Accordingly, utilization of food factors with GLP-1-releasing/enhancing activity is a promising strategy for preventing and treating obesity and diabetes.


Dietary Proteins/pharmacology , Enteroendocrine Cells/drug effects , Glucagon-Like Peptide 1/metabolism , Glucose Intolerance/diet therapy , Phytochemicals/pharmacology , Animals , Humans
...