Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Future Med Chem ; : 1-19, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949858

RESUMEN

Aim: Chromones are promising for anticancer drug development. Methods & results: 12 chromone-based compounds were synthesized and tested against cancer cell lines. Compound 8 showed the highest cytotoxicity (LC50 3.2 µM) against colorectal cancer cells, surpassing 5-fluorouracil (LC50 4.2 µM). It suppressed colony formation, induced cell cycle arrest and triggered apoptotic cell death, confirmed by staining and apoptosis markers. Cell death was accompanied by enhanced reactive oxygen species formation and modulation of the autophagic machinery (autophagy marker light chain 3B (LC3B); adenosine monophosphate-activated protein kinase (AMPK); protein kinase B (PKB); UNC-51-like kinase (ULK)-1; and ULK2). Molecular docking and dynamic simulations revealed that compound 8 directly binds to ULK1. Conclusion: Compound 8 is a promising lead for autophagy-modulating anti-colon cancer drugs.


[Box: see text].

2.
Heliyon ; 10(4): e25454, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38379964

RESUMEN

Silver nanoparticle is widely used in various field including medical, cosmetic, food and industrial purposes due to their unique properties in electrical conductivity, thermal, and biological activities. In the medical field, silver nanoparticles (AgNPs) have been reported to have strong antimicrobial and cytotoxic activities. This study aimed to synthesize and characterize silver nanoparticles (AgNPs) using Maclurodendron porteri (MP) extract and to evaluate the antimicrobial and cytotoxic activities of the synthesised MP-AgNPs. Green method of Ultrasound Assisted Extraction (UAE) was used to extract the leaves of M. porter. Liquid Chromatography -Mass Spectrometry/Quadrupole time-of-flight (LC-MS/QTOF) was used to identify the compounds in the leaf extract of M. porteri. Characterisation of the synthesised nanoparticles involved ultraviolet-visible (UV-Vis), Fourier Transform Infrared (FTIR), scanning electromagnetic microscopy (SEM), Zeta potential Analyzer and Particle Size Analyzer. The cytotoxic assay was conducted on MCF-7 and Caco-2 cell lines by MTT assay. Antimicrobial activity was tested on Gram-negative and Gram-positive bacteria using the disc diffusion method. Based on LC-MS/QTOF analysis, 430 compounds were found. The identified major compounds consist of amino acids, polyphenols, steroids, terpenoids and heterocyclic compounds which possibly act as reducing agents. 1 mM, 5 mM and 10 mM of silver nitrate solution were mixed with the leaf extract to form silver nanoparticles. 1.2 mg/ml of MP-AgNPs were found to have antibacterial activity against B. subtilis, S. aureus, E. coli, and P. aeruginosa with inhibitory zones of 8.0 ± 0.36 mm, 8.5 ± 0.45 mm, 7.5 ± 0.36 mm, and 9.0 ± 0.40 mm respectively. MP-AgNPs showed no cytotoxic activity against Caco-2 and MCF-7 cells. In conclusion, the presence of major amine compounds such as 10,11-dihydro-10,11-dihydroxyprotriptyline and harderoporphyrin in the extract facilitated the synthesis of AgNPs and the nanoparticle showed weak bioactivities in the assay conducted.

3.
Heliyon ; 10(2): e24195, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293453

RESUMEN

The occurrence of resistance to anticancer and the emergence of serious side effects due to chemotherapy is one of the main problems in cancer treatment, including breast cancer. The need for effective anticancer with a specific target is urgently required. Streptomyces are widely known as the potential producers of new anticancer molecules. Previously reported that the methanol extract of Streptomyces sennicomposti GMY01 isolated from Krakal Coast, Gunungkidul had very strong cytotoxic activity against MCF-7 and T47D breast cancer cells with IC50 values of 0.6 and 1.3 µg/mL, respectively. The following study aimed to isolate and identify active compounds of the S. sennicomposti GMY01 and evaluate its cytotoxic activity. The study was started by re-culturing and re-fermented optimization of S. sennicomposti GMY01 in a larger volume, then the bacteria were extracted using methanol following the bioassay-guided isolation of the extract obtained. The active compounds obtained were then structurally determined using UV/Vis spectroscopy, Fourier Transform-Infrared (FT-IR), Liquid Chromatography-Mass Spectroscopy (LC-MS), 1H NMR, and 13C NMR and analyzed for their cytotoxic activity using MTT assay on MCF-7 and normal Vero cells line. The results showed that the culture of the S. sennicomposti GMY01 using Starch Nitrate Broth (SNB) media yields the best results compared to other culture media. An active anticancer compound namely mannotriose was successfully isolated from the methanol extract with an IC50 value of 5.6 µg/mL and 687 µg/mL against the MCF-7 and Vero cells lines, respectively, indicating that this compound showed strong cytotoxic activity with high selectivity.

4.
ACS Appl Bio Mater ; 6(12): 5169-5192, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38036466

RESUMEN

The biopolymer lignin, which is heterogeneous and abundant, is usually present in plant cell walls and gives them rigidity and strength. As a byproduct of the wood, paper, and pulp manufacturing industry, lignin ranks as the second most prevalent biopolymer worldwide, following cellulose. This review paper explores the extraction, modification, and prospective applications of lignin in various industries, including the enhancement of thermosetting and thermoplastic polymers, biomedical applications such as vanillin production, fuel development, carbon fiber composites, and the creation of nanomaterials for food packaging and drug delivery. The structural characteristics of lignin remain undefined due to its origin, separation, and fragmentation processes. This comprehensive overview encompasses state-of-the-art techniques, potential applications, diverse extraction methods, chemical modifications, carbon fiber utilization, and the extraction of vanillin. Moreover, the review focuses on the utilization of lignin-modified polymer blends across multiple manufacturing sectors, providing insights into the advantages and limitations of this innovative approach for the development of environmentally friendly materials.


Asunto(s)
Lignina , Polímeros , Lignina/química , Polímeros/química , Fibra de Carbono , Biopolímeros
5.
Molecules ; 28(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37570723

RESUMEN

Glucokinase plays an important role in regulating the blood glucose level and serves as an essential therapeutic target in type 2 diabetes management. Entada africana is a medicinal plant and highly rich source of bioactive ligands with the potency to develop new target drugs for glucokinase such as diabetes and obesity. Therefore, the study explored a computational approach to predict identified compounds from Entada africana following its intermolecular interactions with the allosteric binding site of the enzymes. We retrieved the three-dimensional (3D) crystal structure of glucokinase (PDB ID: 4L3Q) from the online protein data bank and prepared it using the Maestro 13.5, Schrödinger Suite 2022-3. The compounds identified were subjected to ADME, docking analysis, pharmacophore modeling, and molecular simulation. The results show the binding potential of the identified ligands to the amino acid residues, thereby suggesting an interaction of the amino acids with the ligand at the binding site of the glucokinase activator through conventional chemical bonds such as hydrogen bonds and hydrophobic interactions. The compatibility of the molecules was highly observed when compared with the standard ligand, thereby leading to structural and functional changes. Therefore, the bioactive components from Entada africana could be a good driver of glucokinase, thereby paving the way for the discovery of therapeutic drugs for the treatment of diabetes and its related complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Simulación del Acoplamiento Molecular , Glucoquinasa/metabolismo , Ligandos , Diabetes Mellitus Tipo 2/tratamiento farmacológico
6.
Micromachines (Basel) ; 14(7)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37512693

RESUMEN

The administration of poorly water-soluble drugs represents a relevant problem due to the low body fluids transport efficiency through hydrophilic hydrogels. Star-shaped co-polymers, i.e., amphiphilic polymers such as those with a hydrophobic core and a hydrophilic outer shell, can be used to improve weak interactions with drugs, with relevant benefits in terms of administration and controlled delivery. In this work, two different co-polymers, four-arm star-shaped PCL-PEG and six-arm star-shaped PCL-PEG, were synthesized via ring-opening polymerization to be loaded with ciprofloxacin. 1H-NMR and FTIR analyses confirmed that PCL arms were successfully grafted to the mPEG backbone, while DSC analysis indicated similar crystallinity and melting point, ranging from 56 to 60 °C, independent of the different co-polymer architecture. Therefore, both star-shaped PCL-PEGs were investigated as cargo device for ciprofloxacin. No significant differences were observed in terms of drug entrapment efficiency (>95%) and drug release, characterized by a pronounced burst followed by a slow sustained release, only slightly affected by the co-polymer architecture. This result was also confirmed with curve fitting via the Korsmeyer-Peppas model. Lastly, good antibacterial properties and biocompatibility exhibited in both star-shaped PCL-PEG co-polymers suggest a promising use for oral delivery applications.

7.
Expert Rev Vaccines ; 22(1): 629-642, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37401128

RESUMEN

INTRODUCTION: mRNA vaccines have been developed as a promising cancer management. It is noted that specification of the antigen sequence of the target antigen is necessary for the design and manufacture of an mRNA vaccine. AREAS COVERED: The steps involved in preparing the mRNA-based cancer vaccines are isolation of the mRNA cancer from the target protein using the nucleic acid RNA-based vaccine, sequence construction to prepare the DNA template, in vitro transcription for protein translation from DNA into mRNA strand, 5' cap addition and poly(A) tailing to stabilize and protect the mRNA from degradation and purification process to remove contaminants produced during preparation. EXPERT OPINION: Lipid nanoparticles, lipid/protamine/mRNA nanoparticles, and cell-penetrating peptides have been used to formulate mRNA vaccine and to ensure vaccine stability and delivery to the target site. Delivery of the vaccine to the target site will trigger adaptive and innate immune responses. Two predominant factors of the development of mRNA-based cancer vaccines are intrinsic influence and external influence. In addition, research relating to the dosage, route of administration, and cancer antigen types have been observed to positively impact the development of mRNA vaccine.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Vacunas , Humanos , Neoplasias/terapia , Inmunidad Innata , Vacunas de ARNm , ARN Mensajero
8.
Heliyon ; 9(3): e13823, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36873538

RESUMEN

Cancer is a second leading disease-causing death worldwide that will continuously grow as much as 70% in the next 20 years. Chemotherapy is still becoming a choice for cancer treatment despite its severity of side effects and low success rate due to ineffective delivery of the chemodrugs. Since it was introduced in 1960, significant progress has been achieved in the use of liposomes in drug delivery. The study aims to review relevant literatures on role of PEGylated liposome in enhancing cytotoxic activity of several agents. A systematic literature on the use of PEGylated liposomes in anticancer research via Scopus, Google scholar and PubMed databases was conducted for studies published from 2000 to 2022. A total of 15 articles were selected and reviewed from 312 articles identified covering a variety of anticancer treatments by using PEGylated liposomes. PEGylated liposome which is purposed to achieve steric equilibrium is one of enhanced strategies to deliver anticancer drugs. It has been shown that some improvement of delivery and protection form a harsh gastric environment of several anticancer drugs when they are formulated in a PEGylated liposome. One of the successful drugs that has been clinically used is Doxil®, followed by some other drugs in the pipeline Various drugs (compounds) had been used to enhance the efficacy of PEGylated liposomes for targeted cancer cells in vitro and in vivo. In conclusion, PEGylated liposomes enhance drug activities and have great potential to become efficient anticancer delivery to follow Doxil® in the clinical setting.

9.
Molecules ; 28(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36838579

RESUMEN

The African nutmeg (Monodora myristica) is a medically useful plant. We, herein, aimed to critically examine whether bioactive compounds identified in the extracted oil of Monodora myristica could act as antimicrobial agents. To this end, we employed the Schrödinger platform as the computational tool to screen bioactive compounds identified in the oil of Monodora myristica. Our lead compound displayed the highest potency when compared with levofloxacin based on its binding affinity. The hit molecule was further subjected to an Absorption, Distribution, Metabolism, Excretion (ADME) prediction, and a Molecular Dynamics (MD) simulation was carried out on molecules with PubChem IDs 529885 and 175002 and on three standards (levofloxacin, cephalexin, and novobiocin). The MD analysis results demonstrated that two molecules are highly compact when compared to the native protein; thereby, this suggests that they could affect the protein on a structural and a functional level. The employed computational approach demonstrates that conformational changes occur in DNA gyrase after the binding of inhibitors; thereby, this resulted in structural and functional changes. These findings expand our knowledge on the inhibition of bacterial DNA gyrase and could pave the way for the discovery of new drugs for the treatment of multi-resistant bacterial infections.


Asunto(s)
Annonaceae , Antiinfecciosos , Inhibidores de Topoisomerasa II , Annonaceae/química , Antiinfecciosos/farmacología , Girasa de ADN , Levofloxacino , Inhibidores de Topoisomerasa II/farmacología
11.
Nat Prod Res ; : 1-8, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577029

RESUMEN

Biotransformation is acknowledged as one of the green chemistry methods to synthesis various analogues for further valorization of natural product compounds chemistry and bioactivities. It has huge advantage over chemical synthesis due to its cost-efficiency and higher selectivity. In this work, a xanthorrhizol derivatives, namely (7 R,10S)-10,11-dihydro-10,11-dihydroxyxanthorrhizol was produced in 60% yield from the biotransformation process utilizing A. niger. The structure of the compound was established by extensive spectroscopic methods and comparison with literature data. This biotransformation successfully afforded enantioselective dihydroxylation reaction via green chemistry route. This is the first report on both biotransformation of xanthorrhizol and utilization of A. niger as its biocatalyst.

12.
Front Pharmacol ; 13: 849704, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685633

RESUMEN

The genus Alocasia (Schott) G. Don consists of 113 species distributed across Asia, Southeast Asia, and Australia. Alocasia plants grow in tropical and subtropical forests with humid lowlands. Featuring their large green heart-shaped or arrow-shaped ear leaves and occasionally red-orange fruit, they are very popular ornamental plants and are widely used as traditional medicines to treat various diseases such as jaundice, snake bite, boils, and diabetes. This manuscript critically analysed the distribution, traditional uses, and phytochemical contents of 96 species of Alocasia. The numerous biological activities of Alocasia species were also presented, which include anti-cancer, antidiabetic and antihyperglycaemic, antioxidant, antidiarrhoea, antimicrobial and antifungal, antiparasitic (antiprotozoal and anthelminthic), antinociceptive and anti-inflammatory, brine shrimp lethality, hepatoprotective, anti-hemagglutinin, anti-constipation and diuretic, and radioprotective activities as well as acute toxicity studies. Research articles were acquired by the accessing three scientific databases comprising PubMed, Scopus, and Google Scholar. For this review, specific information was obtained using the general search term "Alocasia", followed by the "plant species names" and "phytochemical" or "bioactivity" or "pharmacological activity". The accepted authority of the plant species was referred from theplantlist.org. Scientific studies have revealed that the genus is mainly scattered throughout Asia. It has broad traditional benefits, which have been associated with various biological properties such as cytotoxic, antihyperglycaemic, antimicrobial, and anti-inflammatory. Alocasia species exhibit diverse biological activities that are very useful for medical treatment. The genus Alocasia was reported to be able to produce a strong and high-quality anti-cancer compound, namely alocasgenoside B, although information on this compound is currently limited. Therefore, it is strongly recommended to further explore the relevant use of natural compounds present in the genus Alocasia, particularly as an anti-cancer agent. With only a few Alocasia species that have been scientifically studied so far, more attention and effort is required to establish the link between traditional uses, active compounds, and pharmacological activities of various species of this genus.

13.
Front Pharmacol ; 13: 895616, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721199

RESUMEN

Natural products offer a wide range of bioactivity including antimicrobial properties. There are many reports showing the antimicrobial activities of phytochem icals from plants. However, the bioactivity is limited due to multidrug resistant properties of the microorganism and different composition of cell membrane. The antibacterial activity of the natural products is different toward Gram-negative and Gram-positive bacteria. These phenomena are caused by improper physicochemical conditions of the substance which hinder the phytochemical bioactivity against the broad range of bacteria. One of the strategies to improve the antimicrobial action is by biogenic synthesis via redox balance of the antimicrobial active substance with metal to form nanosized materials or nanoparticles (NPs). Antibiotic resistance is not relevant to NPs because the action of NPs is via direct contact with bacterial cell walls without the need of penetration into microbial cells. The NPs that have shown their effectiveness in preventing or overcoming biofilm formation such as silver-based nanoparticles (AgNPs), gold-based nanoparticles (AuNPs), platinum-based nanoparticles (PtNPs) and Zinc oxide-based nanoparticles (ZnONPs). Due to its considerably simple synthesis procedure has encouraged researchers to explore antimicrobial potency of metallic nanoparticles. Those metallic nanoparticles remarkably express synergistic effects against the microorganisms tested by affecting bacterial redox balance, thus disrupting their homeostasis. In this paper, we discuss the type of metallic nanoparticle which have been used to improve the antimicrobial activity of plant extract/constituents, preparation or synthesis process and characterisation of the plant-based metallic nanoparticles.

14.
Plants (Basel) ; 10(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34961160

RESUMEN

Psychotria malayana Jack belongs to the Rubiacea and is widespread in Southeast Asian countries. It is traditionally used to treat diabetes. Despite its potential medicinal use, scientific proof of this pharmacological action and the toxic effect of this plant are still lacking. Hence, this study aimed to investigate the in vitro antidiabetic and antioxidant activities, toxicity, and preliminary phytochemical screening of P. malayana leaf extracts by gas chromatography-mass spectrometry (GC-MS) after derivatization. The antidiabetic activities of different extracts of this plant were investigated through alpha-glucosidase inhibitory (AGI) and 2-NBDG glucose uptake using 3T3-L1 cell line assays, while the antioxidant activity was evaluated using DPPH and FRAP assays. Its toxicological effect was investigated using the zebrafish embryo/larvae (Danio rerio) model. The mortality, hatchability, tail-detachment, yolk size, eye size, beat per minute (BPM), and body length were taken into account to observe the teratogenicity in all zebrafish embryos exposed to methanol extract. The LC50 was determined using probit analysis. The methanol extract showed the AGI activity (IC50 = 2.71 ± 0.11 µg/mL), insulin-sensitizing activity (at a concentration of 5 µg/mL), and potent antioxidant activities (IC50 = 10.85 µg/mL and 72.53 mg AAE/g for DPPH and FRAP activity, respectively). Similarly, the water extract exhibited AGI activity (IC50 = 6.75 µg/mL), insulin-sensitizing activity at the concentration of 10 µg/mL, and antioxidant activities (IC50 = 27.12 and 33.71 µg/mL for DPPH and FRAP activity, respectively). The methanol and water extracts exhibited the LC50 value higher than their therapeutic concentration, i.e., 37.50 and 252.45 µg/mL, respectively. These results indicate that both water and methanol extracts are safe and potentially an antidiabetic agent, but the former is preferable since its therapeutic index (LC50/therapeutic concentration) is much higher than for methanol extracts. Analysis using GC-MS on derivatized methanol and water extracts of P. malayana leaves detected partial information on some constituents including palmitic acid, 1,3,5-benzenetriol, 1-monopalmitin, beta-tocopherol, 24-epicampesterol, alpha-tocopherol, and stigmast-5-ene, that could be a potential target to further investigate the antidiabetic properties of the plant. Nevertheless, isolation and identification of the bioactive compounds are required to confirm their antidiabetic activity and toxicity.

15.
Mar Drugs ; 19(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34822502

RESUMEN

Sponge-derived fungi have recently attracted attention as an important source of interesting bioactive compounds. Aspergillus nomius NC06 was isolated from the marine sponge Neopetrosia chaliniformis. This fungus was cultured on rice medium and yielded four compounds including three new oxisterigmatocystins, namely, J, K, and L (1, 2, and 3), and one known compound, aspergillicin A (4). Structures of the compounds were elucidated by 1D and 2D NMR spectroscopy and by high-resolution mass spectrometry. The isolated compounds were tested for cytotoxic activity against HT 29 colon cancer cells, where compounds 1, 2, and 4 exhibited IC50 values of 6.28, 15.14, and 1.63 µM, respectively. Under the fluorescence microscope by using a double staining method, HT 29 cells were observed to be viable, apoptotic, and necrotic after treatment with the cytotoxic compounds 1, 2, and 4. The result shows that compounds 1 and 2 were able to induce apoptosis and cell death in HT 29 cells.


Asunto(s)
Antineoplásicos/farmacología , Aspergillus , Poríferos , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Organismos Acuáticos , Línea Celular Tumoral/efectos de los fármacos , Humanos
16.
Biomedicines ; 9(10)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34680496

RESUMEN

This study aimed to isolate xanthones from Garcinia forbesii and evaluated their activity in vitro and in silico. The isolated compounds were evaluated for their antioxidant activity by DPPH, ABTS and FRAP methods. The antidiabetic activity was performed against α-glucosidase and α-amylase enzymes. The antiplasmodial activity was evaluated using Plasmodium falciparum strain 3D7 sensitive to chloroquine. Molecular docking analysis on the human lysosomal acid-alpha-glucosidase enzyme (5NN8) and P. falciparum lactate dehydrogenase enzyme (1CET) and prediction of ADMET for the active compound, were also studied. For the first time, lichexanthone (1), subelliptenone H (2), 12b-hydroxy-des-D-garcigerrin A (3), garciniaxanthone B (4) and garcigerin A (5) were isolated from the CH2Cl2 extract of the stem bark of G. forbesii. Four xanthones (Compounds 2-5) showed strong antioxidant activity. In vitro α-glucosidase test showed that Compounds 2 and 5 were more active than the others, while Compound 4 was the strongest against α-amylase enzymes. In vitro antiplasmodial evaluation revealed that Compounds 2 and 3 showed inhibitory activity on P. falciparum. Molecular docking studies confirmed in vitro activity. ADMET predictions suggested that Compounds 1-5 were potential candidates for oral drugs. The isolated 2-5 can be used as promising phytotherapy in antidiabetic and antiplasmodial treatment.

17.
J Ethnopharmacol ; 278: 114316, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34116190

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Pterocarpus (Fabaceae) has about 46 species that are distributed over Asia, especially Indonesia, Africa, and several countries in America. Particularly, P. indicus and P. santalinus have been recorded as ancestor recipe in the old Indonesian book (Cabe puyang warisan nenek moyang). These plants have found application in traditional medicine, such as in the treatment of inflammatory diseases, gonorrhoea, infection, coughs, mouth ulcers, boils, diarrhoea, as well as in the management of pain (as an analgesic). AIM OF THE REVIEW: The present review aimed to comprehensively summarise the current researches on the traditional and scientific applications of the genus Pterocarpus with regard to the phytochemical content, in vivo and in vitro bioactivities, as well as clinical evidence that may be useful for future drug development. MATERIALS AND METHODS: Information about the Pterocarpus genus were obtained from local classic herbal literature and electronic databases, such as PubMed, Scopus, and Google Scholar. The scientific name of the species and its synonyms were checked with the information of The Plant List. Additionally, clinical trial results were obtained from the Cochrane library. RESULTS: Several phytochemical constituents of the plants, e.g., flavonoids, isoflavonoids, terpenoids, phenolic acids, and fatty acids have been reported. There are about 11 species of Pterocarpus that have been scientifically studied for their biological activities, including anti-inflammatory, anti-microbial, analgesic, and anti-hyperglycemic. Of which, the anti-hyperglycemic activity of the extracts and phytochemicals of P. indicus and P. marsupium is particularly remarkable, allowing them to be further studied under clinical trial. CONCLUSION: The present review has provided an insight into the traditional applications of the plants and some of them have been validated by scientific evidence, particularly their applications as anti-inflammatory and anti-microbial agents. In addition, the genus has demonstrated notable anti-diabetic activity in various clinical trials.


Asunto(s)
Etnofarmacología , Fitoquímicos , Fitoterapia , Pterocarpus/química , Humanos , Plantas Medicinales/química
18.
J Pharm Pharmacol ; 73(1): 1-21, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33791809

RESUMEN

OBJECTIVES: The genus Ferulago belonging to the family Apiaceae is a flora widely distributed in Central Asia and the Mediterranean and used in folk medicine. It is administered as a sedative, tonic, digestive, aphrodisiac, also as a treatment for intestinal worms and haemorrhoids. Herein, we reported a review on phytochemistry and its biological activities reported from 1990 up to early 2020. All the information and reported studies concerning Ferulago plants were summarized from the library and digital databases (e.g. Scopus, Medline, Scielo, ScienceDirect, SciFinder and Google Scholar). KEY FINDINGS: The phytochemical investigations of Ferulago species revealed the presence of coumarins as the main bioactive compounds, including daucane derivatives, sesquiterpenes aryl esters, phenol derivatives, flavonoids and essential oils. Moreover, the therapeutic potentials of the pure compounds isolated from the genus Ferulago possess promising properties namely anticholinesterase, antimicrobial, anticoagulant, antileishmanial, antioxidant, antibacterial and antiproliferative. SUMMARY: Today, significant advances in phytochemical and biological activity studies of different Ferulago species have been revealed. The traditional uses and reported biological results could be correlated via the chemical characterization of these plants. All these data will support the biologists in the elucidation of the biological mechanisms of these plants.


Asunto(s)
Apiaceae/química , Fitoquímicos/farmacología , Fitoterapia , Extractos Vegetales , Biodiversidad , Cumarinas/análisis , Cumarinas/farmacología , Etnofarmacología , Aceites Volátiles/análisis , Aceites Volátiles/farmacología , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sesquiterpenos/análisis , Sesquiterpenos/farmacología
19.
Drug Metab Pers Ther ; 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33818031

RESUMEN

By 9 February 2021, the Coronavirus has killed 2,336,650 people worldwide and it has been predicted that this number continues to increase in year 2021. The study aimed to identify therapeutic approaches and drugs that can potentially be used as interventions in Coronavirus 2019 (COVID-19) management. A systematic scoping review was conducted. Articles reporting clinical evidence of therapeutic management of COVID-19 were selected from three different research databases (Google Scholar, PubMed, and Science Direct). From the database search, 31 articles were selected based on the study inclusion and exclusion criteria. This review paper showed that remdesivir and ivermectin significantly reduced viral ribonucleic acid (RNA) activity. On the other hand, convalescent plasma (CP) significantly improved COVID-19 clinical symptoms. Additionally, the use of corticosteroid increased survival rates in COVID-19 patients with acute respiratory distress syndrome (ARDS). Findings also indicated that both hydroxychloroquine and favipiravir were effective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, lopinavir-ritonavir combination was not effective against COVID-19. Finally, ribavirin, galidesivir, and sofosbuvir showed potential therapeutic benefit in treating COVID-19, but there is a lack of clinical evidence on their effectiveness against SARS-CoV-2. Remdesivir, ivermectin, favipiravir, hydroxychloroquine, dexamethasone, methylprednisolone, and CP are the therapeutic agents that can potentially be used in COVID-19 management.

20.
Adv Pharm Bull ; 11(1): 171-180, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33747864

RESUMEN

Purpose: Insulin resistance is a characteristic of non-insulin-dependent diabetes mellitus associated with obesity and caused by the failure of pancreatic beta cells to secrete sufficient amount of insulin. Andrographolide (AND) improves beta-cell reconstruction and inhibits fat-cell formation. This research aimed to improve the delivery of water-insoluble AND in self-nanoemulsifying (ASNE) formulation, tested in streptozotocin (STZ)-induced diabetic rats and 3T3-L1 preadipocyte cells. Methods: A conventional formulation of AND in suspension was used as a control. The experimental rats were orally administered with self-nanoemulsifying (SNE) and suspension of AND for 8 days. Measurements were performed to evaluate blood glucose levels in preprandial and postprandial conditions. Immunohistochemistry was used to assess the process of islet beta cell reconstruction. In vitro study was performed using cell viability and adipocyte differentiation assay to determine the delivery of AND in the formulation. Results: ASNE lowered blood glucose levels (day 4) faster than AND suspension (day 6). The histological testing showed that ASNE could regenerate pancreatic beta cells. Therefore, ASNE ameliorated pancreatic beta cells. The in vitro evaluation indicated the inhibition of adipocyte differentiation by both AND and ASNE, which occurred in a time-dependent manner. ASNE formulation had better delivery than AND. Conclusion: ASNE could improve the antidiabetic activity by lowering blood glucose levels, enhancing pancreatic beta cells, and inhibiting lipid formation in adipocyte cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA