Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 37(10): e23185, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37695721

RESUMEN

Sensory neurons in the dorsal root ganglia (DRG) convey somatosensory and metabolic cues to the central nervous system and release substances from stimulated terminal endings in peripheral organs. Sex-biased variations driven by the sex chromosome complement (XX and XY) have been implicated in the sensory-islet crosstalk. However, the molecular underpinnings of these male-female differences are not known. Here, we aim to characterize the molecular repertoire and the secretome profile of the lower thoracic spinal sensory neurons and to identify molecules with sex-biased insulin sensing- and/or insulin secretion-modulating activity that are encoded independently of circulating gonadal sex hormones. We used transcriptomics and proteomics to uncover differentially expressed genes and secreted molecules in lower thoracic T5-12 DRG sensory neurons derived from sexually immature 3-week-old male and female C57BL/6J mice. Comparative transcriptome and proteome analyses revealed differential gene expression and protein secretion in DRG neurons in males and females. The transcriptome analysis identified, among others, higher insulin signaling/sensing capabilities in female DRG neurons; secretome screening uncovered several sex-specific candidate molecules with potential regulatory functions in pancreatic ß cells. Together, these data suggest a putative role of sensory interoception of insulin in the DRG-islet crosstalk with implications in sensory feedback loops in the regulation of ß-cell activity in a sex-biased manner. Finally, we provide a valuable resource of molecular and secretory targets that can be leveraged for understanding insulin interoception and insulin secretion and inform the development of novel studies/approaches to fathom the role of the sensory-islet axis in the regulation of energy balance in males and females.


Asunto(s)
Insulina , Transcriptoma , Femenino , Masculino , Ratones , Animales , Ratones Endogámicos C57BL , Secreción de Insulina , Caracteres Sexuales , Secretoma , Células Receptoras Sensoriales
2.
Cell Biosci ; 12(1): 178, 2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309763

RESUMEN

BACKGROUND: Central nervous system (CNS) control of metabolism plays a pivotal role in maintaining energy balance. In the brain, Glucagon-like peptide 1 (GLP-1), encoded by the proglucagon 'Gcg' gene, produced in a distinct population of neurons in the nucleus tractus solitarius (NTS), has been shown to regulate feeding behavior leading to the suppression of appetite. However, neuronal networks that mediate endogenous GLP-1 action in the CNS on feeding and energy balance are not well understood. RESULTS: We analyzed the distribution of GLP-1R-expressing neurons and axonal projections of NTS GLP-1-producing neurons in the mouse brain. GLP-1R neurons were found to be broadly distributed in the brain and specific forebrain regions, particularly the hypothalamus, including the arcuate nucleus of the hypothalamus (ARC), a brain region known to regulate energy homeostasis and feeding behavior, that receives dense NTSGcg neuronal projections. The impact of GLP-1 signaling in the ARC GLP-1R-expressing neurons and the impact of activation of ARC GLP-1R on food intake was examined. Application of GLP-1R specific agonist Exendin-4 (Exn-4) enhanced a proportion of the ARC GLP-1R-expressing neurons and pro-opiomelanocortin (POMC) neuronal action potential firing rates. Chemogenetic activation of the ARC GLP-1R neurons by using Cre-dependent hM3Dq AAV in the GLP-1R-ires-Cre mice, established that acute activation of the ARC GLP-1R neurons significantly suppressed food intake but did not have a strong impact on glucose homeostasis. CONCLUSIONS: These results highlight the importance of central GLP-1 signaling in the ARC that express GLP-1R that upon activation, regulate feeding behavior.

3.
Mol Metab ; 53: 101260, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34023484

RESUMEN

The regulation of glucose-stimulated insulin secretion and glucose excursion has a sensory component that operates in a sex-dependent manner. OBJECTIVE: Here, we aim to dissect the basis of the sexually dimorphic interaction between sensory neurons and pancreatic ß cells and its overall impact on insulin release and glucose homeostasis. METHODS: We used viral retrograde tracing techniques, surgical and chemodenervation models, and primary cell-based co-culture systems to uncover the biology underlying sex differences in sensory modulation of pancreatic ß-cell activity. RESULTS: Retrograde transsynaptic labeling revealed a sex difference in the density of sensory innervation in the pancreas. The number of sensory neurons emanating from the dorsal root and nodose ganglia that project in the pancreas is higher in male than in female mice. Immunostaining and confocal laser scanning microscopy confirmed the higher abundance of peri-islet sensory axonal tracts in the male pancreas. Capsaicin-induced sensory chemodenervation concomitantly enhanced glucose-stimulated insulin secretion and glucose clearance in male mice. These metabolic benefits were blunted when mice were orchidectomized prior to the ablation of sensory nerves. Interestingly, orchidectomy also lowered the density of peri-islet sensory neurons. In female mice, capsaicin treatment did not affect glucose-induced insulin secretion nor glucose excursion and ovariectomy did not modify these outcomes. Interestingly, same- and opposite-sex sensory-islet co-culture paradigms unmasked the existence of potential gonadal hormone-independent mechanisms mediating the male-female difference in sensory modulation of islet ß-cell activity. CONCLUSION: Taken together, these data suggest that the sex-biased nature of the sensory control of islet ß-cell activity is a result of a combination of neurodevelopmental inputs, sex hormone-dependent mechanisms and the potential action of somatic molecules encoded by the sex chromosome complement.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Glucemia/metabolismo , Femenino , Homeostasis , Secreción de Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...