Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 369(2): 259-269, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30833484

RESUMEN

Most cannabinoid 1 receptor (CB1R) agonists will signal through both G protein-dependent and -independent pathways in an unbiased manner. Recruitment of ß-arrestin 2 desensitizes and internalizes receptors, producing tolerance that limits therapeutic utility of cannabinoids for chronic conditions. We developed the indole quinuclidinone (IQD) analog (Z)-2-((1-(4-fluorobenzyl)-1H-indol-3-yl)methylene)quinuclidin-3-one (PNR-4-20) as a novel G protein-biased agonist at CB1Rs, and the present studies determine if repeated administration of PNR-4-20 produces lesser tolerance to in vivo effects compared with unbiased CB1R agonists Δ9-tetrahydrocannabinol (Δ9-THC) and 1-pentyl-3-(1-naphthoyl)indole (JWH-018). Adult male National Institutes of Health Swiss mice were administered comparable doses of PNR-4-20 (100 mg/kg), Δ9-THC (30 mg/kg), or JWH-018 (3 mg/kg) once per day for five consecutive days to determine tolerance development to hypothermic, antinociceptive, and cataleptic effects. Persistence of tolerance was then determined after a drug abstinence period. We found that unbiased CB1R agonists Δ9-THC and JWH-018 produced similar tolerance to these effects, but lesser tolerance was observed with PNR-4-20 for hypothermic and cataleptic effects. Tolerance to the effects of PNR-4-20 completely recovered after drug abstinence, while residual tolerance was always observed with unbiased CB1R agonists. Repeated treatment with PNR-4-20 and Δ9-THC produced asymmetric crosstolerance to hypothermic effects. Importantly, binding studies suggest PNR-4-20 produced significantly less downregulation of CB1Rs relative to Δ9-THC in hypothalamus and thalamus of chronically treated mice. These studies suggest that the G protein-biased CB1R agonist PNR-4-20 produces significantly less tolerance than unbiased cannabinoid agonists, and that the IQD analogs should be investigated further as a novel molecular scaffold for development of new therapeutics.


Asunto(s)
Dronabinol/farmacología , Tolerancia a Medicamentos , Indoles/farmacología , Naftalenos/farmacología , Quinuclidinas/farmacología , Receptor Cannabinoide CB1/agonistas , Animales , Cannabinoides/farmacología , Catalepsia/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Indoles/uso terapéutico , Masculino , Ratones , Naftalenos/uso terapéutico , Nocicepción/efectos de los fármacos , Quinuclidinas/uso terapéutico , Factores de Tiempo
2.
J Pharmacol Exp Ther ; 368(2): 146-156, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30420360

RESUMEN

Convulsant effects of abused synthetic cannabinoid (SCB) drugs have been reported in humans and laboratory animals, but the mechanism of these effects is not known. We compared convulsant effects of partial CB1R agonist ∆9-tetrahydrocannabinol (THC), full CB1R agonist SCBs JWH-018 and 5F-AB-PINACA, and classic chemical convulsant pentylenetetrazol (PTZ) using an observational rating scale in mice. THC did not elicit convulsions, but both SCBs did so as effectively as and more potently than PTZ. SCB-elicited convulsions were attenuated by the CB1R antagonist rimonabant or by THC, or by dose regimens of THC and JWH-018, which downregulate and desensitize CB1Rs. None of these treatments altered the convulsant effects of PTZ, although diazepam attenuated PTZ-elicited convulsions without altering SCB-induced convulsant effects. Repeated administration of a subthreshold dose of PTZ kindled convulsant effects, but this was not observed with the SCBs, and no cross-kindling was observed. Repeated administration of the SCBs resulted in tolerance to convulsant effects, but no cross-tolerance to PTZ was observed. Inhibition on Phase I metabolism via nonselective inhibition of CYP450s with 1-aminobenzotriazole potentiated the hypothermic effects of the SCBs and protected against the convulsant effects of JWH-018, but not those of 5F-AB-PINACA or PTZ. Incubation of human liver microsomes with the SCBs showed that JWH-018 is eliminated via oxidation, whereas 5F-AB-PINACA is not. These studies suggest that SCB-elicited convulsions are mediated by high intrinsic efficacy at CB1Rs and that benzodiazepines may not be effective treatments. Finally, drug metabolism may dramatically modulate the convulsant effects of some, but not all, SCBs.


Asunto(s)
Convulsivantes/toxicidad , Drogas Ilícitas/toxicidad , Indazoles/toxicidad , Indoles/toxicidad , Naftalenos/toxicidad , Receptor Cannabinoide CB1/agonistas , Convulsiones/inducido químicamente , Valina/análogos & derivados , Animales , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Receptor Cannabinoide CB1/metabolismo , Convulsiones/metabolismo , Valina/toxicidad
3.
Drug Alcohol Depend ; 192: 285-293, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30300803

RESUMEN

BACKGROUND: Cannabinoids may be useful in the treatment of CNS disorders including drug abuse and addiction, where both CB1R antagonists / inverse agonists and CB2R agonists have shown preclinical efficacy. TV-5-249 and TV-6-41, two novel aminoalkylindoles with dual action as neutral CB1R antagonists and CB2R agonists, previously attenuated abuse-related effects of ethanol in mice. PURPOSE: To further characterize these drugs, TV-5-249 and TV-6-41 were compared with the CB1R antagonist / inverse agonist rimonabant in assays relevant to adverse effects and cannabinoid withdrawal. PROCEDURES AND FINDINGS: The cannabinoid tetrad confirmed that TV-5-249 and TV-6-41 were devoid of CB1R agonist effects at behaviorally-relevant doses, and neither of the novel drugs induced rimonabant-like scratching. Generalized aversive effects were assessed, and rimonabant and TV-5-249 induced taste aversion, but TV-6-41 did not. Schedule-controlled responding and observation of somatic signs were used to assess withdrawal-like effects precipitated by rimonabant or TV-6-41 in mice previously treated with the high-efficacy CB1R agonist JWH-018 or vehicle. Rimonabant and TV-6-41 dose-dependently suppressed response rates in all subjects, but TV-6-41 did so more potently in JWH-018-treated mice than in vehicle-treated mice, while rimonabant equally suppressed responding in both groups. Importantly, rimonabant elicited dramatic withdrawal signs, but TV-6-41 did not. CONCLUSIONS: These findings suggest differences in both direct adverse effects and withdrawal-related effects elicited by rimonabant, TV-5-249, and TV-6-41, which could relate to neutral CB1R antagonism, CB2R agonism, or a combination of both. Both mechanisms should be explored and exploited in future drug design efforts to develop pharmacotherapies for drug dependence.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/agonistas , Rimonabant/farmacología , Animales , Agonistas de Receptores de Cannabinoides/efectos adversos , Antagonistas de Receptores de Cannabinoides/efectos adversos , Cannabinoides/farmacología , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Tiempo de Reacción , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología , Rimonabant/efectos adversos , Gusto/efectos de los fármacos , Gusto/fisiología
4.
J Neurosci ; 38(41): 8737-8744, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30150362

RESUMEN

Regulators of G-protein signaling (RGS) proteins negatively modulate presynaptic µ-opioid receptor inhibition of GABA release in the ventrolateral periaqueductal gray (vlPAG). Paradoxically, we find that G-protein-coupled receptor (GPCR) activation of G-protein-gated inwardly rectifying K+ channels (GIRKs) in the vlPAG is reduced in an agonist- and receptor-dependent manner in transgenic knock-in mice of either sex expressing mutant RGS-insensitive Gαo proteins. µ-Opioid receptor agonist activation of GIRK currents was reduced for DAMGO and fentanyl but not for [Met5]-enkephalin acetate salt hydrate (ME) in the RGS-insensitive heterozygous (Het) mice compared with wild-type mice. The GABAB agonist baclofen-induced GIRK currents were also reduced in the Het mice. We confirmed the role of Gαo proteins in µ-opioid receptor and GABAB receptor signaling pathways in wild-type mice using myristoylated peptide inhibitors of Gαo1 and Gαi1-3 The results using these inhibitors indicate that receptor activation of GIRK channels is dependent on the preference of the agonist-stimulated receptor for Gαo versus that for Gαi. DAMGO and fentanyl-mediated GIRK currents were reduced in the presence of the Gαo1 inhibitor, but not the Gαi1-3 inhibitors. In contrast, the Gαo1 peptide inhibitor did not affect ME activation of GIRK currents, which is consistent with results in the Het mice, but the Gαi1-3 inhibitors significantly reduced ME-mediated GIRK currents. Finally, the reduction in GIRK activation in the Het mice plays a role in opioid- and baclofen-mediated spinal antinociception, but not supraspinal antinociception. Thus, our studies indicate that RGS proteins have multiple mechanisms of modulating GPCR signaling that produce negative and positive regulation of signaling depending on the effector.SIGNIFICANCE STATEMENT Regulators of G-protein signaling (RGS) proteins positively modulate GPCR coupling to GIRKs, and this coupling is critical for opioid- and baclofen-mediated spinal antinociception, whereas µ-opioid receptor-mediated supraspinal antinociception depends on presynaptic inhibition that is negatively regulated by RGS proteins. The identification of these opposite roles for RGS proteins has implications for signaling via other GPCRs.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Neuronas/metabolismo , Sustancia Gris Periacueductal/metabolismo , Proteínas RGS/metabolismo , Analgésicos/administración & dosificación , Animales , Baclofeno/administración & dosificación , Femenino , Agonistas de Receptores GABA-B/administración & dosificación , Locomoción/efectos de los fármacos , Masculino , Ratones Transgénicos , Neuronas/efectos de los fármacos , Sustancia Gris Periacueductal/efectos de los fármacos , Receptores de GABA-B/metabolismo , Receptores Opioides mu/agonistas
5.
Pharmacol Res ; 125(Pt B): 161-177, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28838808

RESUMEN

The human cannabinoid subtype 1 receptor (hCB1R) is highly expressed in the CNS and serves as a therapeutic target for endogenous ligands as well as plant-derived and synthetic cannabinoids. Unfortunately, acute use of hCB1R agonists produces unwanted psychotropic effects and chronic administration results in development of tolerance and dependence, limiting the potential clinical use of these ligands. Studies in ß-arrestin knockout mice suggest that interaction of certain GPCRs, including µ-, δ-, κ-opioid and hCB1Rs, with ß-arrestins might be responsible for several adverse effects produced by agonists acting at these receptors. Indeed, agonists that bias opioid receptor activation toward G-protein, relative to ß-arrestin signaling, produce less severe adverse effects. These observations indicate that therapeutic utility of agonists acting at hCB1Rs might be improved by development of G-protein biased hCB1R agonists. Our laboratory recently reported a novel class of indole quinulidinone (IQD) compounds that bind cannabinoid receptors with relatively high affinity and act with varying efficacy. The purpose of this study was to determine whether agonists in this novel cannabinoid class exhibit ligand bias at hCB1 receptors. Our studies found that a novel IQD-derived hCB1 receptor agonist PNR-4-20 elicits robust G protein-dependent signaling, with transduction ratios similar to the non-biased hCB1R agonist CP-55,940. In marked contrast to CP-55,940, PNR-4-20 produces little to no ß-arrestin 2 recruitment. Quantitative calculation of bias factors indicates that PNR-4-20 exhibits from 5.4-fold to 29.5-fold bias for G protein, relative to ß-arrestin 2 signaling (when compared to G protein activation or inhibition of forskolin-stimulated cAMP accumulation, respectively). Importantly, as expected due to reduced ß-arrestin 2 recruitment, chronic exposure of cells to PNR-4-20 results in significantly less desensitization and down-regulation of hCB1Rs compared to similar treatment with CP-55,940. PNR-4-20 (i.p.) is active in the cannabinoid tetrad in mice and chronic treatment results in development of less persistent tolerance and no significant withdrawal signs when compared to animals repeatedly exposed to the non-biased full agoinst JWH-018 or Δ9-THC. Finally, studies of a structurally similar analog PNR- 4-02 show that it is also a G protein biased hCB1R agonist. It is predicted that cannabinoid agonists that bias hCB1R activation toward G protein, relative to ß-arrestin 2 signaling, will produce fewer and less severe adverse effects both acutely and chronically.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Proteínas de Unión al GTP/metabolismo , Quinuclidinas/farmacología , Animales , Células CHO , Cricetulus , Ciclohexanoles/farmacología , Indoles/farmacología , Masculino , Ratones , Naftalenos/farmacología , Receptor Cannabinoide CB1/metabolismo , Arrestina beta 2/metabolismo
6.
Trends Pharmacol Sci ; 38(3): 257-276, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28162792

RESUMEN

In the early 2000s in Europe and shortly thereafter in the USA, it was reported that 'legal' forms of marijuana were being sold under the name K2 and/or Spice. Active ingredients in K2/Spice products were determined to be synthetic cannabinoids (SCBs), producing psychotropic actions via CB1 cannabinoid receptors, similar to those of Δ9-tetrahydrocannabinol (Δ9-THC), the primary active constituent in marijuana. Often abused by adolescents and military personnel to elude detection in drug tests due to their lack of structural similarity to Δ9-THC, SCBs are falsely marketed as safe marijuana substitutes. Instead, SCBs are a highly structural diverse group of compounds, easily synthesized, which produce very dangerous adverse effects occurring by, as of yet, unknown mechanisms. Therefore, available evidence indicates that K2/Spice products are clearly not safe marijuana alternatives.


Asunto(s)
Cannabinoides/química , Cannabinoides/envenenamiento , Animales , Cannabinoides/farmacocinética , Cannabinoides/toxicidad , Humanos , Drogas Ilícitas/química , Drogas Ilícitas/farmacocinética , Drogas Ilícitas/envenenamiento , Drogas Ilícitas/toxicidad , Trastornos Relacionados con Sustancias/etiología , Trastornos Relacionados con Sustancias/metabolismo
7.
Curr Top Behav Neurosci ; 32: 249-262, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28012093

RESUMEN

Commercial preparations containing synthetic cannabinoids (SCBs) are rapidly emerging as drugs of abuse. Although often assumed to be "safe" and "legal" alternatives to cannabis, reports indicate that SCBs induce toxicity not often associated with the primary psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC). This chapter will summarize the evidence that use of SCBs poses greater health risks relative to marijuana and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ9-THC may contribute to this increased toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ9-THC typically observed in vitro, SCBs act as full CB1 and CB2 receptor agonists both in cellular assays and animal studies. Furthermore, unlike Δ9-THC metabolism, several SCB metabolites retain high affinity for and exhibit a range of intrinsic activities at CB1 and CB2 receptors. Finally, the potential for SCBs to cause adverse drug-drug interactions with other drugs of abuse, as well as with common therapeutic agents, will be discussed. Collectively, the evidence provided in this chapter indicates that SCBs should not be considered safe and legal alternatives to marijuana. Instead, the enhanced toxicity of SCBs relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2 receptors, highlights the inherent danger that may accompany use of these substances.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/farmacología , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor Cannabinoide CB2/efectos de los fármacos , Adamantano/análogos & derivados , Adamantano/farmacología , Animales , Benzoxazinas/farmacología , Cannabinoides , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas , Humanos , Indazoles/farmacología , Indoles/farmacología , Morfolinas/farmacología , Naftalenos/farmacología
8.
Psychopharmacology (Berl) ; 232(15): 2751-61, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25772338

RESUMEN

RATIONALE: Previous reports shows rimonabant's inverse properties may be a limiting factor for treating cannabinoid dependence. To overcome this limitation, neutral antagonists were developed, to address mechanisms by which an inverse agonist and neutral antagonist elicit withdrawal. OBJECTIVE: The objective of this study is to introduce an animal model to study cannabinoid dependence by incorporating traditional methodologies and profiling novel cannabinoid ligands with distinct pharmacological properties/modes of action by evaluating their pharmacological effects on CB1-receptor (CB1R) related physiological/behavioral endpoints. METHODS: The cannabinergic AM2389 was acutely characterized in the tetrad (locomotor activity, analgesia, inverted screen/catalepsy bar test, and temperature), with some comparisons made to Δ(9)-tetrahydrocannabinol (THC). Tolerance was measured in mice repeatedly administered AM2389. Antagonist-precipitated withdrawal was characterized in cannabinoid-adapted mice induced by either centrally acting antagonists, rimonabant and AM4113, or an antagonist with limited brain penetration, AM6545. RESULTS: In the tetrad, AM2389 was more potent and longer acting than THC, suggesting a novel approach for inducing dependence. Repeated administration of AM2389 led to tolerance by attenuating hypothermia that was induced by acute AM2389 administration. Antagonist-precipitated withdrawal signs were induced by rimonabant or AM4113, but not by AM6545. Antagonist-precipitated withdrawal was reversed by reinstating AM2389 or THC. CONCLUSIONS: These findings suggest cannabinoid-precipitated withdrawal may not be ascribed to the inverse properties of rimonabant, but rather to rapid competition with the agonist at the CB1R. This withdrawal syndrome is likely centrally mediated, since only the centrally acting CB1R antagonists elicited withdrawal, i.e., such responses were absent after the purported peripherally selective CB1R antagonist AM6545.


Asunto(s)
Cannabinoides/efectos adversos , Dronabinol/farmacología , Morfolinas/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Síndrome de Abstinencia a Sustancias , Animales , Temperatura Corporal/efectos de los fármacos , Antagonistas de Receptores de Cannabinoides/farmacología , Modelos Animales de Enfermedad , Tolerancia a Medicamentos , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Receptor Cannabinoide CB1/antagonistas & inhibidores , Rimonabant
9.
Curr Addict Rep ; 1(2): 129-136, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26413452

RESUMEN

Cannabis has been used throughout the world for centuries. The psychoactive effects of cannabis are largely attributable to Δ9-tetrahydrocannabinol (Δ9-THC), the prototypical cannabinoid that occurs naturally in the plant. More recently, chemically- and pharmacologically-distinct synthetic cannabinoids (SCBs) have emerged as drugs of abuse. As compared to Δ9-THC, the distinct structures of these compounds allow them to avoid legal restrictions (at least initially) and detection in standard drug screens. This has contributed to the popularity of SCBs among drug users who seek to avoid positive drug screens. Importantly, the distinct structures of the SCBs also typically result in increased affinity for and efficacy at cannabinoid CB1 receptors, which are thought to be responsible for the psychoactive effects of Δ9-THC and its analogues. Accordingly, it seems likely that these more powerful cannabimimetic effects could result in increased adverse reactions and toxicities not elicited by Δ9-THC in cannabis. Animal models useful for the study of emerging SCBs include the cannabinoid tetrad, drug discrimination, and assays of tolerance, dependence, and withdrawal. However, these in vivo procedures have not been particularly informative with regards to drug efficacy, where the majority of SCB effects are comparable to those of Δ9-THC. In contrast, essentially all in vitro measures of drug efficacy confirm Δ9-THC as a relatively weak CB1 partial agonist, while the majority of the SCBs detected in commercial preparations are full agonists at the CB1 receptor. As use of these emerging SCBs continues to rise, there is an urgent need to better understand the pharmacology and toxicology of these novel compounds.

10.
Psychopharmacology (Berl) ; 220(2): 417-26, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21989802

RESUMEN

RATIONALE: The endocannabinoid signaling system (ECS) has been targeted for developing novel therapeutics since ECS dysfunction has been implicated in various pathologies. Current focus is on chemical modifications of the hexahydrocannabinol (HHC) nabilone (Cesamet(®)). OBJECTIVE: To characterize the novel, high-affinity cannabinoid receptor 1 (CB(1)R) HHC-ligand AM2389 [9ß-hydroxy-3-(1-hexyl-cyclobut-1-yl)-hexahydrocannabinol in two rodent pre-clinical assays. MATERIALS AND METHODS: CB(1)R mediation of AM2389-induced hypothermia in mice was evaluated with AM251, a CB(1)R-selective antagonist/inverse agonist. Additionally, two groups of rats discriminated the full cannabinergic aminoalkylindole AM5983 (0.18 and 0.56 mg/kg) from vehicle 20 min post-injection in a two-choice operant conditioning task motivated by 0.1% saccharin/water. Generalization/substitution tests were conducted with AM2389, AM5983, and Δ(9)-tetrahydrocannabinol (Δ(9)-THC). RESULTS: Δ(9)-THC (30 mg/kg)-induced hypothermia exhibited a faster onset and shorter duration of action compared with AM2389 (0.1 and 0.3 mg/kg). AM251 (3 and 10 mg/kg) attenuated/blocked hypothermia induced by 0.3 mg/kg AM2389. In drug discrimination, the order of potency was AM2389 > AM5983 > Δ(9)-THC with ED(50) values of 0.0025, 0.0571, and 0.2635 mg/kg, respectively, in the low-dose condition. The corresponding ED(50) values in the high-dose condition were 0.0069, 0.1246, and 0.8438 mg/kg, respectively. Onset of the effects of AM2389 was slow with a protracted time-course; the functional, perceptual in vivo half-life was approximately 17 h. CONCLUSIONS: This potent cannabinergic HHC exhibited a slow onset of action with a protracted time-course. The AM2389 chemotype appears well suited for further drug development, and AM2389 currently is used to probe behavioral consequences of sustained ECS activation.


Asunto(s)
Benzopiranos/farmacología , Hipotermia/inducido químicamente , Receptor Cannabinoide CB1/agonistas , Animales , Benzopiranos/antagonistas & inhibidores , Condicionamiento Operante/efectos de los fármacos , Discriminación en Psicología/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Dronabinol/farmacología , Interacciones Farmacológicas , Indoles/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/antagonistas & inhibidores , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA