Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Article En | MEDLINE | ID: mdl-38082593

Wireless endovascular sensors and stimulators are emerging biomedical technologies for applications such as endovascular pressure monitoring, hyperthermia, and neural stimulations. Recently, coil-shaped stents have been proposed for inductive power transfer to endovascular devices using the stent as a receiver. However, less work has been done on the external transmitter components, so the maximum power transferable remains unknown. In this work, we design and evaluate a wearable transmitter coil that allows 50 mW power transfer in simulation.Clinical Relevance-This allows more accurate measurements and precise control of endovascular devices.


Wearable Electronic Devices , Wireless Technology , Electric Power Supplies , Computer Simulation , Stents
3.
Stem Cell Res ; 59: 102642, 2022 Mar.
Article En | MEDLINE | ID: mdl-34971934

Neural precursor cells (NPCs) transplanted into the adult neocortex generate neurons that synaptically integrate with host neurons, supporting the possibility of achieving functional tissue repair. However, poor survival and functional neuronal recovery of transplanted NPCs greatly limits engraftment. Here, we test the hypothesis that combining blood vessel-forming vascular cells with neuronal precursors improves engraftment. By transplanting mixed embryonic neocortical cells into adult mice with neocortical strokes, we show that transplant-derived neurons synapse with appropriate targets while donor vascular cells form vessels that fuse with the host vasculature to perfuse blood within the graft. Although all grafts became vascularized, larger grafts had greater contributions of donor-derived vessels that increased as a function of their distance from the host-graft border. Moreover, excluding vascular cells from the donor cell population strictly limited graft size. Thus, inclusion of vessel-forming vascular cells with NPCs is required for more efficient engraftment and ultimately for tissue repair.

...