Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(20): 200203, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38039455

RESUMEN

Energetic coherence is indispensable for various operations, including precise measurement of time and acceleration of quantum manipulations. Since energetic coherence is fragile, it is essential to understand the limits in distillation and dilution to restore damage. The resource theory of asymmetry (RTA) provides a rigorous framework to investigate energetic coherence as a resource to break time-translation symmetry. Recently, in the independent and identically distributed (i.i.d.) regime where identical copies of a state are converted into identical copies of another state, it was shown that the convertibility of energetic coherence is governed by a standard measure of energetic coherence, called the quantum Fisher information (QFI). This fact means that QFI in the theory of energetic coherence takes the place of entropy in thermodynamics and entanglement entropy in entanglement theory. However, distillation and dilution in realistic situations take place in regimes beyond i.i.d., where quantum states often have complex correlations. Unlike entanglement theory, the conversion theory of energetic coherence in pure states in the non-i.i.d. regime has been an open problem. In this Letter, we solve this problem by introducing a new technique: an information-spectrum method for QFI. Two fundamental quantities, coherence cost and distillable coherence, are shown to be equal to the spectral QFI rates for arbitrary sequences of pure states. As a consequence, we find that both entanglement theory and RTA in the non-i.i.d. regime are understood in the information-spectrum method, while they are based on different quantities, i.e., entropy and QFI, respectively.

2.
Phys Rev Lett ; 131(21): 210602, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38072595

RESUMEN

Numerous quantum error-mitigation protocols have been proposed, motivated by the critical need to suppress noise effects on intermediate-scale quantum devices. Yet, their general potential and limitations remain elusive. In particular, to understand the ultimate feasibility of quantum error mitigation, it is crucial to characterize the fundamental sampling cost-how many times an arbitrary mitigation protocol must run a noisy quantum device. Here, we establish universal lower bounds on the sampling cost for quantum error mitigation to achieve the desired accuracy with high probability. Our bounds apply to general mitigation protocols, including the ones involving nonlinear postprocessing and those yet to be discovered. The results imply that the sampling cost required for a wide class of protocols to mitigate errors must grow exponentially with the circuit depth for various noise models, revealing the fundamental obstacles in the scalability of useful noisy near-term quantum devices.

3.
Phys Rev Lett ; 131(21): 210201, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38072616

RESUMEN

The Wigner-Araki-Yanase (WAY) theorem states that additive conservation laws imply the commutativity of exactly implementable projective measurements and the conserved observables of the system. Known proofs of this theorem are only restricted to bounded or discrete-spectrum conserved observables of the system and are not applicable to unbounded and continuous observables like a momentum operator. In this Letter, we present the WAY theorem for possibly unbounded and continuous conserved observables under the Yanase condition, which requires that the probe positive operator-valued measure should commute with the conserved observable of the probe system. As a result of this WAY theorem, we show that exact implementations of the projective measurement of the position under momentum conservation and of the quadrature amplitude using linear optical instruments and photon counters are impossible. We also consider implementations of unitary channels under conservation laws and find that the conserved observable L_{S} of the system commutes with the implemented unitary U_{S} if L_{S} is semibounded, while U_{S}^{†}L_{S}U_{S} can shift up to possibly nonzero constant factor if the spectrum of L_{S} is upper and lower unbounded. We give simple examples of the latter case, where L_{S} is a momentum operator.

4.
Phys Rev Lett ; 127(19): 190604, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34797134

RESUMEN

Quantum coherence is a useful resource for increasing the speed and decreasing the irreversibility of quantum dynamics. Because of this feature, coherence is used to enhance the performance of various quantum information processing devices beyond the limitations set by classical mechanics. However, when we consider thermodynamic processes, such as energy conversion in nanoscale devices, it is still unclear whether coherence provides similar advantages. Here we establish a universal framework, clarifying how coherence affects the speed and irreversibility in thermodynamic processes described by the Lindblad master equation, and give general rules for when coherence enhances or reduces the performance of thermodynamic devices. Our results show that a proper use of coherence enhances the heat current without increasing dissipation; i.e., coherence can reduce friction. In particular, if the amount of coherence is large enough, this friction becomes virtually zero, realizing a superconducting-like "dissipation-less" heat current. Since our framework clarifies a general relation among coherence, energy flow, and dissipation, it can be applied to many branches of science from quantum information theory to biology. As an application to energy science, we construct a quantum heat engine cycle that exceeds the power-efficiency trade-off bound on classical engines and effectively attains the Carnot efficiency with finite power in fast cycles.

5.
Phys Rev Lett ; 121(11): 110403, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30265087

RESUMEN

The underlying mechanism in the implementation of unitary operation on a system with an external apparatus is studied. We implement the unitary time evolution in the system as a physical phenomenon that results from the interaction between the system and the apparatus. We investigate the fundamental limitation of an accurate implementation for the desired unitary time evolution. This limitation is manifested in the form of trade-off relations between the accuracy of the implementation and quantum fluctuation of energy in the external apparatus. Our relations clearly show that an accurate unitary operation requires a large energy fluctuation inside the apparatus originated from the quantum fluctuation.

6.
Phys Rev E ; 96(2-1): 022138, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28950461

RESUMEN

A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.

7.
Phys Rev E ; 95(3-1): 032147, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28415334

RESUMEN

Many studies of quantum-size heat engines assume that the dynamics of an internal system is unitary and that the extracted work is equal to the energy loss of the internal system. Both assumptions, however, should be under scrutiny. In the present paper, we analyze quantum-scale heat engines, employing the measurement-based formulation of the work extraction recently introduced by Hayashi and Tajima [M. Hayashi and H. Tajima, arXiv:1504.06150]. We first demonstrate the inappropriateness of the unitary time evolution of the internal system (namely, the first assumption above) using a simple two-level system; we show that the variance of the energy transferred to an external system diverges when the dynamics of the internal system is approximated to a unitary time evolution. Second, we derive the quantum Jarzynski equality based on the formulation of Hayashi and Tajima as a relation for the work measured by an external macroscopic apparatus. The right-hand side of the equality reduces to unity for "natural" cyclic processes but fluctuates wildly for noncyclic ones, exceeding unity often. This fluctuation should be detectable in experiments and provide evidence for the present formulation.

8.
Phys Rev E ; 96(1-1): 012128, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29347128

RESUMEN

The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.

9.
Artículo en Inglés | MEDLINE | ID: mdl-24229151

RESUMEN

We present an inequality which holds in the thermodynamical processes with measurement and feedback controls and uses only the Helmholtz free energy and the entanglement of formation: W(ext)≤-ΔF-k(B)TΔE(F). The quantity -ΔE(F), which is positive, expresses the amount of entanglement transfer from system S to probe P through the interaction U(SP) during the measurement. It is easier to achieve the upper bound in this inequality than in the Sagawa-Ueda inequality [Phys. Rev. Lett. 100, 080403 (2008)]. Our inequality has clear physical meaning: in the above thermodynamical processes, the work which we can extract from the thermodynamic system is greater than the upper bound in the conventional thermodynamics by the amount of the entanglement extracted by the measurement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA