Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 75
1.
Surg Case Rep ; 10(1): 139, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842785

BACKGROUND: Pseudo-Kaposi sarcoma (PKS) is a rare vascular proliferative disease, caused by arteriovenous malformation (AVM) and chronic venous insufficiency. The lesions are characterized by purple or reddish-brownish papules, plaques, and nodules. Although benign, it is clinically similar to Kaposi's sarcoma (KS), a malignant disease, and must be differentiated by histopathological examination. We report a rare case of PKS with chronic limb-threatening ischemia (CLTI). CASE PRESENTATION: An 83-year-old man with diabetes mellitus (DM) presented to a local dermatology department with a complaint of a right second toe ulcer and was, thereby, referred to our department due to arterial bleeding during skin biopsy to exclude malignant diseases. Although the pulsation of dorsalis pedis artery of the affected limb was palpable, the skin perfusion pressure was only 20 and 30 mmHg on the dorsum and planter surface, respectively, indicating severe ischemia of toe and forefoot. Ultrasonography and computed tomography revealed an AVM around the right second metatarsophalangeal joint and occlusion of the right dorsalis pedis artery in the middle, indicating CLTI in the background. Pathological findings of the skin biopsy found capillary blood vessel proliferation, hemosiderin deposition, and extravascular red blood cell leakage in the dermal layer, which could be found in KS. However, CD34 was normally stained in the vascular endothelium, and human herpesvirus-8 staining was negative, resulting in the pathological diagnosis of PKS, a proliferative vascular lesion associated with AVM. The ulcer was spontaneously epithelialized, but 2 years later the ulcer recurred and infection developed, necessitating treatment for abnormal blood flow. Transarterial embolization using N-butyl 2-cyanoacrylate for the AVM controlled abnormal perfusion once; however, the procedure exacerbated perfusion of the toe, resulting in foot ulcer progression. Forefoot amputation with surgical excision of AVM was performed, and thereby, wound healing was achieved. CONCLUSION: This is a rare case of PKS with CLTI complicated with AVM. As there is currently no established consensus on the treatment of PKS, the approach to treatment strategy should be tailored to the specific condition of each patient.

2.
Article En | MEDLINE | ID: mdl-38780240

Kikuchi-Fujimoto disease (KFD) is an inflammatory disease of unknown etiology characterized by fever and cervical lymphadenopathy. Although KFD is a self-limiting disease, patients with severe or long-lasting course require glucocorticoid (GC) therapy. We report a presently 17-year-old boy with KFD who had 7 relapses since the onset at 4-year-old. He suffered from hypothermia, bradycardia, and hypotension during the treatment with prednisolone or methylprednisolone. All of his vital signs recovered after cessation of the drug in addition to fluid replacement and warming. Thus, GC was effective but could not be continued because of the adverse event. Although hypothermia developed during the treatment with 5 mg/kg/day of cyclosporine A (CsA) at his second relapse, he was successfully treated with lower-dose CsA (3 mg/kg/day). Thereafter, he had five relapses of KFD until the age of 12 and was treated by 1.3-2.5 mg/kg/day of CsA. Hypothermia accompanied by bradycardia and hypotension developed soon after concomitant administration of ibuprofen at his 5th and 6th relapses even during low-dose CsA therapy. Conclusively, GC, standard dose of CsA or concomitant use of NSAIDs may cause hypothermia, bradycardia and hypotension and needs special attention. Low-dose CsA could be a choice for such cases with KFD.

3.
Anal Sci ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38753117

In this study, large-volume dual preconcentration by isotachophoresis and stacking (LDIS) which is an on-line sample preconcentration technique coupling large-volume sample stacking with an electroosmotic flow pump (LVSEP) with transient isotachophoresis (tITP) was applied to microchip electrophoresis (MCE) for improving both detection sensitivities and peak shapes. To realize LDIS in MCE, we investigated experimental procedures for injecting a short plug of a leading electrolyte (LE) solution into a straight microchannel without any sophisticated injector apparatus. We found that a short LE plug could be injected into a sample-filled straight-channel only by making the liquid level of the LE solution in an outlet reservoir higher than that in an inlet one. By applying a reversed-polarity voltage to the microchip, anionic analytes injected throughout the microchannel were first enriched by LVSEP, followed by tITP. Through the second preconcentration effect by tITP in LDIS, sensitivity enhancement factor (SEF) and asymmetry factor for a standard dye were improved from 878 and 0.62 to 1330 and 1.14, respectively, relative to those in conventional LVSEP. It should be noted that more viscous running buffer containing sieving polymers could be employed to the LDIS analysis, which was effective for improving the SEF and the separation efficiencies, especially for bio-polymeric compounds. Finally, LDIS was applied to the oligosaccharide and protein analyses in MCE, resulting in the SEFs of 1410 and ca. 50 for maltotriose and bovine milk casein, respectively.

4.
R Soc Open Sci ; 11(5): 231527, 2024 May.
Article En | MEDLINE | ID: mdl-38716332

The fidelity of vertical transmission is a critical factor in maintaining mutualistic associations with microorganisms. The obligate mutualism between termites and intestinal protist communities has been maintained for over 130 million years, suggesting the faithful transmission of diverse protist species across host generations. Although a severe bottleneck can occur when alates disperse with gut protists, how protist communities are maintained during this process remains largely unknown. In this study, we examined the dynamics of intestinal protist communities during adult eclosion and alate dispersal in the termite Reticulitermes speratus. We found that the protist community structure in last-instar nymphs differed significantly from that in workers and persisted intact during adult eclosion, whereas all protists disappeared from the gut during moults between worker stages. The number of protists in nymphs and alates was substantially lower than in workers, whereas the proportion of protist species exhibiting low abundance in workers was higher in nymphs and alates. Using a simulation-based approach, we demonstrate that such changes in the protist community composition of nymphs and alates improve the transmission efficiency of whole protist species communities. This study thus provides novel insights into how termites have maintained mutualistic relationships with diverse gut microbiota for generations.

5.
EBioMedicine ; 103: 105102, 2024 May.
Article En | MEDLINE | ID: mdl-38614865

BACKGROUND: Cell-cell interaction factors that facilitate the progression of adenoma to sporadic colorectal cancer (CRC) remain unclear, thereby hindering patient survival. METHODS: We performed spatial transcriptomics on five early CRC cases, which included adenoma and carcinoma, and one advanced CRC. To elucidate cell-cell interactions within the tumour microenvironment (TME), we investigated the colocalisation network at single-cell resolution using a deep generative model for colocalisation analysis, combined with a single-cell transcriptome, and assessed the clinical significance in CRC patients. FINDINGS: CRC cells colocalised with regulatory T cells (Tregs) at the adenoma-carcinoma interface. At early-stage carcinogenesis, cell-cell interaction inference between colocalised adenoma and cancer epithelial cells and Tregs based on the spatial distribution of single cells highlighted midkine (MDK) as a prominent signalling molecule sent from tumour epithelial cells to Tregs. Interaction between MDK-high CRC cells and SPP1+ macrophages and stromal cells proved to be the mechanism underlying immunosuppression in the TME. Additionally, we identified syndecan4 (SDC4) as a receptor for MDK associated with Treg colocalisation. Finally, clinical analysis using CRC datasets indicated that increased MDK/SDC4 levels correlated with poor overall survival in CRC patients. INTERPRETATION: MDK is involved in the immune tolerance shown by Tregs to tumour growth. MDK-mediated formation of the TME could be a potential target for early diagnosis and treatment of CRC. FUNDING: Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Science Research; OITA Cancer Research Foundation; AMED under Grant Number; Japan Science and Technology Agency (JST); Takeda Science Foundation; The Princess Takamatsu Cancer Research Fund.


Colorectal Neoplasms , Single-Cell Analysis , T-Lymphocytes, Regulatory , Tumor Microenvironment , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tumor Microenvironment/immunology , Carcinogenesis/genetics , Carcinogenesis/immunology , Gene Expression Profiling , Transcriptome , Cell Communication/immunology , Immune Tolerance , Gene Expression Regulation, Neoplastic , Male , Female
6.
Adv Mater ; : e2402046, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38639483

Magnetic refrigeration technology can achieve higher energy efficiency based on the magnetocaloric effect (MCE). However, the practical application of MCE materials is hindered by their poor mechanical properties, making them challenging to process into devices. Conventional strengthening strategies usually lead to a trade-off with refrigeration capacity reduction. Here, a novel design is presented to overcome this dilemma by forming dual-phase alloys through in situ precipitation of a tough magnetic refrigeration phase within an intermetallic compound with excellent MCE. In the alloy 87.5Gd-12.5Co, incorporating the interconnected tough phase Gd contributes to enhanced strength (≈505 MPa) with good ductility (≈9.2%). The strengthening phase Gd simultaneously exhibits excellent MCE, enabling the alloy to achieve a peak refrigeration capacity of 720 J kg-1. Moreover, the alloy shows low thermal expansion induced by the synergistic effect of the two phases. It is beneficial for maintaining structural stability during heat exchange in magnetic refrigeration. The coupling interaction between the two magnetic phases can broaden the refrigeration temperature range and reduce hysteresis. This study guides the development of new high-performance materials with an excellent combination of mechanical and magnetic refrigeration properties as needed for gas liquefaction and refrigerators.

7.
Biochem Biophys Res Commun ; 714: 149965, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38657447

At present, the molecular mechanisms driving the progression and metastasis of oral squamous cell carcinoma (OSCC) remain largely uncharacterized. The activation of transforming growth factor-ß (TGF-ß) signaling in the tumor microenvironment has been observed in various types of cancer and has been implicated their progression by enhancing the migration and invasion of epithelial cancer cells. However, its specific roles in the oral cancer progression remain unexplored. In this study, we examined the effects of TGF-ß signaling on the murine squamous cell carcinoma, SCCVII cells in vitro and in vivo. The incubation of SCCVII cells with TGF-ß induced the activation of TGF-ß signals and epithelial-mesenchymal transition (EMT). Notably, the motility of SCCVII cells was increased upon the activation of the TGF-ß signaling. RNA sequencing revealed upregulation of genes related to EMT and angiogenesis. Consistent with these in vitro results, the inhibition of TGF-ß signals in SCCVII cell-derived primary tumors resulted in suppressed angiogenesis. Furthermore, we identified six candidate factors (ANKRD1, CCBE1, FSTL3, uPA, TSP-1 and integrin ß3), whose expression was induced by TGF-ß in SCCVII cells, and associated with poor prognosis for patients with head and neck squamous cell carcinoma. These results highlight the role of TGF-ß signals in the progression of OSCC via multiple mechanisms, including EMT and angiogenesis, and suggest novel therapeutic targets for the treatment of OSCC.


Carcinoma, Squamous Cell , Disease Progression , Epithelial-Mesenchymal Transition , Neovascularization, Pathologic , Signal Transduction , Transforming Growth Factor beta , Animals , Transforming Growth Factor beta/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/blood supply , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/genetics , Mice , Cell Line, Tumor , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/blood supply , Cell Movement/drug effects , Humans , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Angiogenesis
8.
Neural Netw ; 174: 106246, 2024 Jun.
Article En | MEDLINE | ID: mdl-38547801

The agent learns to organize decision behavior to achieve a behavioral goal, such as reward maximization, and reinforcement learning is often used for this optimization. Learning an optimal behavioral strategy is difficult under the uncertainty that events necessary for learning are only partially observable, called as Partially Observable Markov Decision Process (POMDP). However, the real-world environment also gives many events irrelevant to reward delivery and an optimal behavioral strategy. The conventional methods in POMDP, which attempt to infer transition rules among the entire observations, including irrelevant states, are ineffective in such an environment. Supposing Redundantly Observable Markov Decision Process (ROMDP), here we propose a method for goal-oriented reinforcement learning to efficiently learn state transition rules among reward-related "core states" from redundant observations. Starting with a small number of initial core states, our model gradually adds new core states to the transition diagram until it achieves an optimal behavioral strategy consistent with the Bellman equation. We demonstrate that the resultant inference model outperforms the conventional method for POMDP. We emphasize that our model only containing the core states has high explainability. Furthermore, the proposed method suits online learning as it suppresses memory consumption and improves learning speed.


Goals , Learning , Reinforcement, Psychology , Reward , Markov Chains
9.
Cancer Sci ; 115(1): 211-226, 2024 Jan.
Article En | MEDLINE | ID: mdl-37972575

The tumor microenvironment (TME) consists of cancer cells surrounded by stromal components including tumor vessels. Transforming growth factor-ß (TGF-ß) promotes tumor progression by inducing epithelial-mesenchymal transition (EMT) in cancer cells and stimulating tumor angiogenesis in the tumor stroma. We previously developed an Fc chimeric TGF-ß receptor containing both TGF-ß type I (TßRI) and type II (TßRII) receptors (TßRI-TßRII-Fc), which trapped all TGF-ß isoforms and suppressed tumor growth. However, the precise mechanisms underlying this action have not yet been elucidated. In the present study, we showed that the recombinant TßRI-TßRII-Fc protein effectively suppressed in vitro EMT of oral cancer cells and in vivo tumor growth in a human oral cancer cell xenograft mouse model. Tumor cell proliferation and angiogenesis were suppressed in tumors treated with TßRI-TßRII-Fc. Molecular profiling of human cancer cells and mouse stroma revealed that K-Ras signaling and angiogenesis were suppressed. Administration of TßRI-TßRII-Fc protein decreased the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), interleukin-1ß (IL-1ß) and epiregulin (EREG) in the TME of oral cancer tumor xenografts. HB-EGF increased proliferation of human oral cancer cells and mouse endothelial cells by activating ERK1/2 phosphorylation. HB-EGF also promoted oral cancer cell-derived tumor formation by enhancing cancer cell proliferation and tumor angiogenesis. In addition, increased expressions of IL-1ß and EREG in oral cancer cells significantly enhanced tumor formation. These results suggest that TGF-ß signaling in the TME controls cancer cell proliferation and angiogenesis by activating HB-EGF/IL-1ß/EREG pathways and that TßRI-TßRII-Fc protein is a promising tool for targeting the TME networks.


Mouth Neoplasms , Protein Serine-Threonine Kinases , Humans , Mice , Animals , Protein Serine-Threonine Kinases/metabolism , Transforming Growth Factor beta/metabolism , Heparin-binding EGF-like Growth Factor , Endothelial Cells/metabolism , Tumor Microenvironment , Receptors, Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1 , Mouth Neoplasms/genetics , Transforming Growth Factors
10.
Cancer Sci ; 115(2): 490-506, 2024 Feb.
Article En | MEDLINE | ID: mdl-38111334

Tumor progression and metastasis are regulated by endothelial cells undergoing endothelial-mesenchymal transition (EndoMT), a cellular differentiation process in which endothelial cells lose their properties and differentiate into mesenchymal cells. The cells undergoing EndoMT differentiate through a spectrum of intermediate phases, suggesting that some cells remain in a partial EndoMT state and exhibit an endothelial/mesenchymal phenotype. However, detailed analysis of partial EndoMT has been hampered by the lack of specific markers. Transforming growth factor-ß (TGF-ß) plays a central role in the induction of EndoMT. Here, we showed that inhibition of TGF-ß signaling suppressed EndoMT in a human oral cancer cell xenograft mouse model. By using genetic labeling of endothelial cell lineage, we also established a novel EndoMT reporter cell system, the EndoMT reporter endothelial cells (EMRECs), which allow visualization of sequential changes during TGF-ß-induced EndoMT. Using EMRECs, we characterized the gene profiles of multiple EndoMT stages and identified CD40 as a novel partial EndoMT-specific marker. CD40 expression was upregulated in the cells undergoing partial EndoMT, but decreased in the full EndoMT cells. Furthermore, single-cell RNA sequencing analysis of human tumors revealed that CD40 expression was enriched in the population of cells expressing both endothelial and mesenchymal cell markers. Moreover, decreased expression of CD40 in EMRECs enhanced TGF-ß-induced EndoMT, suggesting that CD40 expressed during partial EndoMT inhibits transition to full EndoMT. The present findings provide a better understanding of the mechanisms underlying TGF-ß-induced EndoMT and will facilitate the development of novel therapeutic strategies targeting EndoMT-driven cancer progression and metastasis.


Endothelial Cells , Endothelial-Mesenchymal Transition , Animals , Humans , Mice , Cells, Cultured , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Transforming Growth Factor beta/metabolism , Tumor Microenvironment/genetics , CD40 Antigens/metabolism
11.
bioRxiv ; 2023 Dec 02.
Article En | MEDLINE | ID: mdl-38076840

Spermatogenesis is a unidirectional differentiation process that generates haploid sperm, but how the gene expression program that directs this process is established is largely unknown. Here we determine the high-resolution 3D chromatin architecture of male germ cells during spermatogenesis and show that CTCF-mediated 3D chromatin predetermines the gene expression program required for spermatogenesis. In undifferentiated spermatogonia, CTCF-mediated chromatin contacts on autosomes pre-establish meiosis-specific super-enhancers (SE). These meiotic SE recruit the master transcription factor A-MYB in meiotic spermatocytes, which strengthens their 3D contacts and instructs a burst of meiotic gene expression. We also find that at the mitosis-to-meiosis transition, the germline-specific Polycomb protein SCML2 resolves chromatin loops that are specific to mitotic spermatogonia. Moreover, SCML2 and A-MYB establish the unique 3D chromatin organization of sex chromosomes during meiotic sex chromosome inactivation. We propose that CTCF-mediated 3D chromatin organization enforces epigenetic priming that directs unidirectional differentiation, thereby determining the cellular identity of the male germline.

12.
Org Biomol Chem ; 21(46): 9138-9142, 2023 Nov 29.
Article En | MEDLINE | ID: mdl-37975203

We report herein an enantioselective intermolecular [2 + 2] photocyclization of alkenyl 2-pyrrolyl ketones using the bathochromic shift mediated by a chiral phosphoric acid. This synthetic method provides access to cyclobutanes with up to 98% ee. According to the UV-Vis spectra, the bathochromic effect was observed by mixing alkenyl 2-pyrrolyl ketones and a chiral phosphoric acid. A non-linear correlation was observed between the ee of the catalyst and the ee of the cycloadduct, suggesting that both substrates bind to the chiral phosphoric acid and form a dimer complex before photocycloaddition.

13.
ISME J ; 17(11): 1895-1906, 2023 11.
Article En | MEDLINE | ID: mdl-37653056

The Clostridia is a dominant bacterial class in the guts of various animals and are considered to nutritionally contribute to the animal host. Here, we discovered clostridial endosymbionts of cellulolytic protists in termite guts, which have never been reported with evidence. We obtained (near-)complete genome sequences of three endosymbiotic Clostridia, each associated with a different parabasalid protist species with various infection rates: Trichonympha agilis, Pseudotrichonympha grassii, and Devescovina sp. All these protists are previously known to harbor permanently-associated, mutualistic Endomicrobia or Bacteroidales that supplement nitrogenous compounds. The genomes of the endosymbiotic Clostridia were small in size (1.0-1.3 Mbp) and exhibited signatures of an obligately-intracellular parasite, such as an extremely limited capability to synthesize amino acids, cofactors, and nucleotides and a disrupted glycolytic pathway with no known net ATP-generating system. Instead, the genomes encoded ATP/ADP translocase and, interestingly, regulatory proteins that are unique to eukaryotes in general and are possibly used to interfere with host cellular processes. These three genomes formed a clade with metagenome-assembled genomes (MAGs) derived from the guts of other animals, including human and ruminants, and the MAGs shared the characteristics of parasites. Gene flux analysis suggested that the acquisition of the ATP/ADP translocase gene in a common ancestor was probably key to the emergence of this parasitic clade. Taken together, we provide novel insights into the multilayered symbiotic system in the termite gut by adding the presence of parasitism and present an example of the emergence of putative energy parasites from a dominant gut bacterial clade.


Isoptera , Parasites , Animals , Humans , Phylogeny , Eukaryota/genetics , Bacteria/genetics , Bacteria, Anaerobic , Firmicutes , Mitochondrial ADP, ATP Translocases/genetics , Adenosine Triphosphate , Symbiosis/genetics , Isoptera/microbiology
14.
Br J Cancer ; 129(7): 1105-1118, 2023 10.
Article En | MEDLINE | ID: mdl-37596408

BACKGROUND: Intratumor heterogeneity (ITH) in microsatellite instability-high (MSI-H) colorectal cancer (CRC) has been poorly studied. We aimed to clarify how the ITH of MSI-H CRCs is generated in cancer evolution and how immune selective pressure affects ITH. METHODS: We reanalyzed public whole-exome sequencing data on 246 MSI-H CRCs. In addition, we performed a multi-region analysis from 6 MSI-H CRCs. To verify the process of subclonal immune escape accumulation, a novel computational model of cancer evolution under immune pressure was developed. RESULTS: Our analysis presented the enrichment of functional genomic alterations in antigen-presentation machinery (APM). Associative analysis of neoantigens indicated the generation of immune escape mechanisms via HLA alterations. Multiregion analysis revealed the clonal acquisition of driver mutations and subclonal accumulation of APM defects in MSI-H CRCs. Examination of variant allele frequencies demonstrated that subclonal mutations tend to be subjected to selective sweep. Computational simulations of tumour progression with the interaction of immune cells successfully verified the subclonal accumulation of immune escape mutations and suggested the efficacy of early initiation of an immune checkpoint inhibitor (ICI) -based treatment. CONCLUSIONS: Our results demonstrate the heterogeneous acquisition of immune escape mechanisms in MSI-H CRCs by Darwinian selection, providing novel insights into ICI-based treatment strategies.


Colonic Neoplasms , Colorectal Neoplasms , Humans , Microsatellite Instability , Colorectal Neoplasms/pathology , Colonic Neoplasms/genetics , Mutation , Antigen Presentation , Microsatellite Repeats/genetics
15.
DNA Res ; 30(4)2023 Aug 01.
Article En | MEDLINE | ID: mdl-37478310

The prediction of gene structure within the genome sequence is the starting point of genome analysis, and its accuracy has a significant impact on the quality of subsequent analyses. Gene structure prediction is roughly divided into RNA-Seq-based methods, ab initio-based methods, homology-based methods, and the integration of individual prediction methods. Integrated methods are mainstream in recent genome projects because they improve prediction accuracy by combining or taking the best individual prediction findings; however, adequate prediction accuracy for eukaryotic species has not yet been achieved. Therefore, we developed an integrated tool, GINGER, that solves various issues related to gene structure prediction in higher eukaryotes. By handling artefacts in alignments of RNA and protein sequences, reconstructing gene structures via dynamic programming with appropriately weighted and scored exon/intron/intergenic regions, and applying different prediction processes and filtering criteria to multi-exon and single-exon genes, we achieved a significant improvement in accuracy compared to the existing integration methods. The feature of GINGER is its high prediction accuracy at the gene and exon levels, which is pronounced for species with more complex gene architectures. GINGER is implemented using Nextflow, which allows for the efficient and effective use of computing resources.


Zingiber officinale , Zingiber officinale/genetics , Eukaryota , Genome , Exons , Introns , Algorithms , Software
16.
Semin Cancer Biol ; 92: 130-138, 2023 07.
Article En | MEDLINE | ID: mdl-37068553

Tumor cells evolve in tumor microenvironment composed of multiple cell types. Among these, endothelial cells (ECs) are the major players in tumor angiogenesis, which is a driver of tumor progression and metastasis. Increasing evidence suggests that ECs also contribute to tumor progression and metastasis as they modify their phenotypes to differentiate into mesenchymal cells through a process known as endothelial-mesenchymal transition (EndoMT). This plasticity of ECs is mediated by various cytokines, including transforming growth factor-ß (TGF-ß), and modulated by other stimuli depending on the cellular contexts. Recent lines of evidence have shown that EndoMT is involved in various steps of tumor progression, including tumor angiogenesis, intravasation and extravasation of cancer cells, formation of cancer-associated fibroblasts, and cancer therapy resistance. In this review, we summarize current updates on EndoMT, highlight the roles of EndoMT in tumor progression and metastasis, and underline targeting EndoMT as a potential therapeutic strategy.


Endothelial Cells , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Endothelial Cells/metabolism , Tumor Microenvironment/genetics , Endothelium , Cytokines/metabolism , Neovascularization, Pathologic/metabolism , Epithelial-Mesenchymal Transition/genetics
18.
Cell ; 186(4): 715-731.e19, 2023 02 16.
Article En | MEDLINE | ID: mdl-36754048

Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced. DNA methylation-edited mice generated by microinjection of the methylated ESCs exhibited abnormal metabolic phenotypes. Acquired methylation of the targeted CGI and the phenotypic traits were maintained and transmitted across multiple generations. The heritable CGI methylation was subjected to reprogramming in parental PGCs and subsequently reestablished in the next generation at post-implantation stages. These observations provide a concrete step toward demonstrating transgenerational epigenetic inheritance in mammals, which may have implications in our understanding of evolutionary biology as well as the etiology, diagnosis, and prevention of non-genetically inherited human diseases.


DNA Methylation , Epigenesis, Genetic , Mice , Humans , Animals , CpG Islands , Inheritance Patterns , Mammals/genetics
19.
Materials (Basel) ; 15(21)2022 Nov 03.
Article En | MEDLINE | ID: mdl-36363331

We have fabricated nanocarbon-based palm-sized cubic paper balloons that can be levitated by light irradiation. These paper balloons are composed of carbon nanotube (CNT) freestanding films and cellulose nanofiber (CNF) freestanding films. The number of CNT freestanding films (NCNT) and the number of CNF freestanding films (6-NCNT) among the six walls of the cube were varied. We investigated the effect of NCNT on the levitation behaviors under light irradiation. We found that the balloons were levitated when NCNT was greater than or equal to two. The levitation height was found to be increased by increasing NCNT.

20.
Ann Vasc Dis ; 15(3): 201-205, 2022 Sep 25.
Article En | MEDLINE | ID: mdl-36310735

Chronic limb-threatening ischemia (CLTI) is an important issue for elderly patients with peripheral artery disease. Here, we present the case of a 91-year-old man with CLTI, residing in a rural district. The onset of CLTI rapidly deprived him of ambulation because of a foot infection. Given that he had difficulty with long-distance transportation, limb salvage for extensive tissue loss was performed at a district facility, based on his and his family's request. Finally, skin grafting on the cutting plane of the right ankle bones resulted in wound healing in six months after incomplete revascularization and multiple minor amputations.

...