Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evol Lett ; 8(3): 397-405, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38818415

RESUMEN

Non-genetic variation is the phenotypic variation induced by the differential expression of a genotype in response to varying environmental cues and is broadly categorized into two types: phenotypic plasticity and developmental noise. These aspects of variation have been suggested to play an important role in adaptive evolution. However, the mechanisms by which these two types of non-genetic variations influence the evolutionary process are currently poorly understood. Using a machine-learning-based phenotyping tool, we independently quantified phenotypic plasticity and developmental noise in the wing morphological traits of the fruit fly Drosophila simulans. Utilizing a rearing experiment, we demonstrated plastic responses in both wing size and shape as well as non-zero heritability of both phenotypic plasticity and developmental noise, which suggests that adaptive phenotypic plasticity can evolve via genetic accommodation in the wing morphology of D. simulans. We found a positive correlation between phenotypic plasticity and developmental noise, while the correlation between the plastic response to three kinds of environmental factors that were examined (nutrient condition, temperature, and light-dark cycle) was poor. These results suggest that phenotypic plasticity and developmental noise contribute to evolvability in a similar manner, however, the mechanisms that underlie the correspondence between these two types of variation remain to be elucidated.

2.
Heredity (Edinb) ; 132(5): 267-274, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538720

RESUMEN

Organisms have diverse biological clocks synchronised with environmental cycles depending on their habitats. Anticipation of tidal changes has driven the evolution of circatidal rhythms in some marine species. In the freshwater snail, Semisulcospira reiniana, individuals in nontidal areas exhibit circadian rhythms, whereas those in tidal areas exhibit both circadian and circatidal rhythms. We investigated whether the circatidal rhythms are genetically determined or induced by environmental cycles. The exposure to a simulated tidal cycle did not change the intensity of circatidal rhythm in individuals in the nontidal population. However, snails in the tidal population showed different activity rhythms depending on the presence or absence of the exposure. Transcriptome analysis revealed that genes with circatidal oscillation increased due to entrainment to the tidal cycle in both populations and dominant rhythmicity was consistent with the environmental cycle. These results suggest plasticity in the endogenous rhythm in the gene expression in both populations. Note that circatidal oscillating genes were more abundant in the tidal population than in the nontidal population, suggesting that a greater number of genes are associated with circatidal clocks in the tidal population compared to the nontidal population. This increase of circatidal clock-controlled genes in the tidal population could be caused by genetic changes in the biological clock or the experience of tidal cycle in the early life stage. Our findings suggest that the plasticity of biological rhythms may have contributed to the adaptation to the tidal environment in S. reiniana.


Asunto(s)
Ritmo Circadiano , Agua Dulce , Caracoles , Transcriptoma , Animales , Caracoles/genética , Caracoles/fisiología , Ritmo Circadiano/genética , Perfilación de la Expresión Génica , Relojes Biológicos/genética , Ecosistema
3.
Nat Ecol Evol ; 8(1): 83-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37932383

RESUMEN

Sex-limited morphs can provide profound insights into the evolution and genomic architecture of complex phenotypes. Inter-sexual mimicry is one particular type of sex-limited polymorphism in which a novel morph resembles the opposite sex. While inter-sexual mimics are known in both sexes and a diverse range of animals, their evolutionary origin is poorly understood. Here, we investigated the genomic basis of female-limited morphs and male mimicry in the common bluetail damselfly. Differential gene expression between morphs has been documented in damselflies, but no causal locus has been previously identified. We found that male mimicry originated in an ancestrally sexually dimorphic lineage in association with multiple structural changes, probably driven by transposable element activity. These changes resulted in ~900 kb of novel genomic content that is partly shared by male mimics in a close relative, indicating that male mimicry is a trans-species polymorphism. More recently, a third morph originated following the translocation of part of the male-mimicry sequence into a genomic position ~3.5 mb apart. We provide evidence of balancing selection maintaining male mimicry, in line with previous field population studies. Our results underscore how structural variants affecting a handful of potentially regulatory genes and morph-specific genes can give rise to novel and complex phenotypic polymorphisms.


Asunto(s)
Odonata , Animales , Femenino , Masculino , Odonata/genética , Polimorfismo Genético , Genómica
4.
Sci Rep ; 13(1): 21940, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114661

RESUMEN

Seasonal environmental change is one of the most rapid and striking environmental variables. Although relatively rapid adaptation to environmental changes over several years or several decades has been described in many taxa, rapid responses to seasonal environments are delicate, and therefore, the detection of the evolutionary responses requires sensitive methods. In this study, we examined seasonal changes in phenotypes related to thermal tolerance and morphological traits of Drosophila lutescens collected at the spring and autumn periods from a single location. We first demonstrated that flies in the two seasonal periods were almost genetically identical using double-digest restriction site-associated DNA sequencing and analysis. Using an experimental design to eliminate the effect of possible confounding factors that influence phenotypes (i.e., maternal effects and the environmental conditions in which each phenotype was analyzed), we showed that the heat tolerance of D. lutescens was significantly higher in the autumn population than in the spring population. Furthermore, cold tolerance was slightly higher in the spring population than in the autumn one. Although wing length and thorax length did not change significantly between seasons, the ratio of wing length to thorax length changed significantly between them. These results suggest that seasonal environmental heterogeneity induces rapid phenotypic changes within a year. Finally, we discuss the possibility of rapid evolutionary responses to seasonal changes.


Asunto(s)
Drosophila , Animales , Drosophila/genética , Estaciones del Año , Fenotipo
5.
ACS Appl Mater Interfaces ; 15(46): 53665-53670, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37948622

RESUMEN

Contrary to partially substituted systems, WO3 molecular sieves that exclusively comprise a d0 transition metal ion and do not possess template ions in the cavity are a new class of materials for photocatalysis owing to their framework structure. Because WO3 thermodynamically lacks proton-reduction capability, exploring diverse synthetic approaches of other materials is desirable for facilitating utilization as H2 evolution and water splitting systems. Herein, we report an efficient approach for the protonation of Ag2Ta4O11 to afford H2Ta4O11 for application as a H2 molecular sieve. Hydrogen reduction of Ag2Ta4O11 at 300 °C and post-treatment using HNO3 afforded H2Ta4O11. Characterizations of H2Ta4O11, coupled with density functional theory (DFT) calculations, reveal that the intrinsic structure of Ag2Ta4O11 is maintained. Moreover, H+ is generated from H2 oxidation and forms OH, and the orientation of OH is parallel to that of the ab plane. Desorption and adsorption of H2 within H2Ta4O11 were achieved by heating H2Ta4O11 to above 90 °C. This is attributed to positive thermal expansion, as confirmed by high-temperature X-ray diffraction. H2Ta4O11 is an active heterogeneous photocatalyst for the half-reactions of water splitting. Moreover, deuteration experiments of H2Ta4O11 in D2O suggest its capability as a H2-D2 conversion catalyst. Furthermore, H2Ta4O11 functions as an active synthetic precursor for new tantalate materials, the direct synthesis of which is challenging.

6.
Evolution ; 77(4): 1145-1157, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36801936

RESUMEN

Frequency-dependent selection (FDS) is an evolutionary regime that can maintain or reduce polymorphisms. Despite the increasing availability of polymorphism data, few effective methods are available for estimating the gradient of FDS from the observed fitness components. We modeled the effects of genotype similarity on individual fitness to develop a selection gradient analysis of FDS. This modeling enabled us to estimate FDS by regressing fitness components on the genotype similarity among individuals. We detected known negative FDS on the visible polymorphism in a wild Arabidopsis and damselfly by applying this analysis to single-locus data. Further, we simulated genome-wide polymorphisms and fitness components to modify the single-locus analysis as a genome-wide association study (GWAS). The simulation showed that negative or positive FDS could be distinguished through the estimated effects of genotype similarity on simulated fitness. Moreover, we conducted the GWAS of the reproductive branch number in Arabidopsis thaliana and found that negative FDS was enriched among the top-associated polymorphisms of FDS. These results showed the potential applicability of the proposed method for FDS on both visible polymorphism and genome-wide polymorphisms. Overall, our study provides an effective method for selection gradient analysis to understand the maintenance or loss of polymorphism.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo Genético , Humanos , Genotipo , Genoma , Evolución Biológica , Polimorfismo de Nucleótido Simple
7.
Ecol Evol ; 12(12): e9616, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36518620

RESUMEN

Cities experience changes in abiotic factors, such as warming, increases in noise and light. These changes can lead to phenotypic changes. Several studies have revealed that altered environments change phenotypes in plants and animals in cities. However, limited studies have isolated evolutionary from nongenetic changes. Here, we analyzed the evolution of thermal tolerance and diurnal activity patterns in the urban population of the fruit pest, Drosophila suzukii. Urban and rural isofemale lines were reared under constant conditions. We compared the lower and upper thermal limits (CTmin and CTmax, respectively), and effects of temperature exposure on the thermal limits of urban and rural populations. Common garden experiments showed that urban populations exhibit a lower CTmin than rural populations, suggesting genetic difference in CTmin among populations. On the other hand, the difference in CTmax between urban and rural populations was not significant. Exposure to cold temperature did not affect CTmin in both urban and rural populations. In contrast, exposure to hot temperature increased CTmax especially in urban population, suggesting that urban populations evolved in response to urban heat. We also investigated the daily activity patterns of urban and rural populations and the effect of lifelong artificial light at night on daily activity. We found that night-time light (dim light) reduced the total amount of activity compared to dark night condition. In addition, dim light at night altered the daily rhythm of activity and increased the activity rate at night. The effect of night light on total activity was less in urban than that in rural populations, suggesting that populations in cities evolved to mitigate decreased activity under night light. Our results showed that environmental temperature and artificial light at night evolutionarily and plastically influence ecologically important traits, such as temperature tolerance and diurnal activity.

8.
Inorg Chem ; 61(32): 12719-12725, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35921586

RESUMEN

Pressure-induced phase transitions in a monoclinically distorted LiNbO3-type CuNbO3 with triangularly coordinated Cu and octahedrally coordinated Nb were experimentally and computationally investigated. Phase transitions into GdFeO3-type or NaIO3-type structures generally observed in LiNbO3-type compounds below 30 GPa were not detected in CuNbO3 even at the maximum experimental pressure, 32.4 GPa. Our density functional theory calculations revealed that the phase transition is suppressed by the preference for the CuO3 triangular coordination environment, which reduces the total internal energy. This study clarifies that the change in the coordination environment of given ions can affect the pressure-induced phase transition.

9.
Sci Rep ; 12(1): 1318, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35079049

RESUMEN

One of the most important questions in evolutionary biology is how the spatial distribution of species is limited. Asymmetric gene flow from core populations is suggested to increase the number of poorly adapted immigrants in the populations at the range edge. Genetic load due to migration, i.e., migration load, should prevent adaptation to the local habitat, leading to decreases in distribution range via local extinction or the limiting range expansion. However, few experimental studies have examined the effects of immigration on fitness and natural selection within recipient populations. To investigate the influence of migration load on the evolution of distribution range, we performed field and laboratory observations as well as population transcriptomics for the common river snail, Semisulcospira reiniana. This species meets the conditions that migration from source populations can prevent local adaptation in a sink population because they inhabit the broader range of environments, including middle/upper reaches of a river and estuaries within a single river and they may be more vulnerable to being swept away by water currents due to lowered spontaneous (upward) locomotion activity. We found that river steepness was related to the lower distribution limit of S. reiniana, with a narrower distribution range in the steeper river. Population transcriptomic analysis showed that gene flow was heavily asymmetric from the upstream populations to downstream ones in the steep river, suggesting a greater migration load in the steep river. The number of genes putatively involved in adaptation to the local habitat was lower in the steep river than in the gentle river. Gene expression profiles suggested that individuals achieve better local adaptation in the gentle river. Laboratory experiments suggested that evolutionary differences in salinity tolerance among local populations were only found in the gentle river. Our results consistent with the hypothesis that migration load owing to asymmetric gene flow disturbs local adaptation and restricts the distribution range of river snails.


Asunto(s)
Migración Animal/fisiología , Evolución Molecular , Flujo Génico , Caracoles/genética , Transcriptoma/genética , Altitud , Animales , Ecosistema , Femenino , Carga Genética , Masculino , Fenotipo , Ríos , Tolerancia a la Sal/genética , Selección Genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-34948865

RESUMEN

An association between respiratory muscle weakness and sarcopenia may provide a clue to the mechanism of sarcopenia development. We aimed to clarify this relationship among community-dwelling older adults. In total, 117 community-dwelling older adults were assessed and classified into 4 groups: robust, respiratory muscle weakness, sarcopenia, and respiratory sarcopenia. The respiratory sarcopenia group (12%) had a significantly higher percentage of males and had lower BMI, skeletal muscle index, skeletal muscle mass, phase angle, and oral function than the robust group (32.5%). All physical functions were significantly lower. The respiratory muscle weakness group (54.7%) had a significantly lower BMI and slower walking speed, compared with the robust group. The sarcopenia group (0.8%) was excluded from the analysis. The percent maximum inspiratory pressure was significantly lower in both the respiratory muscle weakness and respiratory sarcopenia groups, compared with the robust group. Almost all participants with sarcopenia showed respiratory muscle weakness. In addition, approximately 50% had respiratory muscle weakness, even in the absence of systemic sarcopenia, suggesting that respiratory muscle weakness may be the precursor of sarcopenia. The values indicating physical function and skeletal muscle mass in the respiratory muscle weakness group were between those in the robust and the respiratory sarcopenia groups.


Asunto(s)
Sarcopenia , Anciano , Estudios Transversales , Humanos , Vida Independiente , Masculino , Debilidad Muscular/epidemiología , Músculos Respiratorios , Sarcopenia/epidemiología
11.
BMC Ecol Evol ; 21(1): 181, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563127

RESUMEN

BACKGROUND: Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conflicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct fitness benefits, and/or by manipulating its host reproduction to favour infected over uninfected females. Under sufficient selective advantage, the mitochondrial haplotype associated with the favoured maternally-inherited symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range. METHOD: The common bluetail damselfly (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism for genetics and genomic signatures of range expansion during climate change. Although there is accumulating data on the consequences of such expansion on the genetics of I. elegans, no study has screened for Wolbachia in the damselfly genus Ischnura. Here, we present the biogeographic variation in Wolbachia prevalence and penetrance across Europe and Japan (including samples from 17 populations), and from close relatives in the Mediterranean area (i.e. I. genei: Rambur, 1842; and I. saharensis: Aguesse, 1958). RESULTS: Our data reveal (a) multiple Wolbachia-strains, (b) potential transfer of the symbiont through hybridization, (c) higher infection rates at higher latitudes, and (d) reduced mitochondrial diversity in the north-west populations, indicative of hitchhiking associated with the selective sweep of the most common strain. We found low mitochondrial haplotype diversity in the Wolbachia-infected north-western European populations (Sweden, Scotland, the Netherlands, Belgium, France and Italy) of I. elegans, and, conversely, higher mitochondrial diversity in populations with low penetrance of Wolbachia (Ukraine, Greece, Montenegro and Cyprus). The timing of the selective sweep associated with infected lineages was estimated between 20,000 and 44,000 years before present, which is consistent with the end of the last glacial period about 20,000 years. CONCLUSIONS: Our findings provide an example of how endosymbiont infections can shape spatial variation in their host evolutionary genetics during postglacial expansion. These results also challenge population genetic studies that do not consider the prevalence of symbionts in many insects, which we show can impact geographic patterns of mitochondrial genetic diversity.


Asunto(s)
ADN Mitocondrial , Odonata/genética , Odonata/microbiología , Wolbachia , Animales , Chipre , ADN Mitocondrial/genética , Femenino , Variación Genética , Filogenia
12.
Biol Lett ; 17(7): 20210194, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34314641

RESUMEN

Intrapopulation variation in behaviour, including activity, boldness and aggressiveness, is becoming more widely recognized and is hypothesized to substantially affect ecological and evolutionary dynamics. Although previous studies used candidate-gene approaches and genome-wide association analyses to identify genes correlated with variations in activity and aggressiveness, behavioural variation may not be fully captured in the nuclear genome, as it does not account for mitochondrial genomes. Mitochondrial genes encode products that are key regulators of the cellular energy-producing pathways in metabolic processes and are thought to play a significant role in life-history and reproductive traits. In this study, we considered many isofemale lines of Drosophila immigrans established from two wild populations to investigate whether intrapopulation variation in the mitochondrial genome affected activity level within this species. We identified two major haplogroups in these populations, and activity levels in both larvae and adults differed significantly between the two haplogroups. This result indicated that intrapopulation variation in activity level may be partially controlled by mitochondrial genes, along with the interaction between nuclear and mitochondrial genes and the age of individual organisms.


Asunto(s)
Drosophila , Genoma Mitocondrial , Animales , Núcleo Celular/metabolismo , ADN Mitocondrial/genética , Drosophila/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Mitocondrias/genética
13.
Ecol Evol ; 11(11): 6962-6976, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34141268

RESUMEN

Latitude is correlated with environmental components that determine the distribution of biodiversity. In combination with geographic factors, latitude-associated environmental variables are expected to influence speciation, but empirical evidence on how those factors interplay is scarce. We evaluated the genetic and environmental variation among populations in the pair of sister species Dioon sonorense-D. vovidesii, two cycads distributed along a latitudinal environmental gradient in northwestern Mexico, to reveal their demographic histories and the environmental factors involved in their divergence. Using genome-wide loci data, we determined the species delimitation, estimated the gene flow, and compared multiple demographic scenarios of divergence. Also, we estimated the variation of climatic variables among populations and used ecological niche models to test niche overlap between species. The effect of geographic and environmental variables on the genetic variation among populations was evaluated using linear models. Our results suggest the existence of a widespread ancestral population that split into the two species ~829 ky ago. The geographic delimitation along the environmental gradient occurs in the absence of major geographic barriers, near the 28th parallel north, where a zonation of environmental seasonality exists. The northern species, D. vovidesii, occurs in more seasonal environments but retains the same niche of the southern species, D. sonorense. The genetic variation throughout populations cannot be solely explained by stochastic processes; the latitudinal-associated seasonality has been an additive factor that strengthened the species divergence. This study represents an example of how speciation can be achieved by the effect of the latitude-associated factors on the genetic divergence among populations.

14.
Biol Lett ; 17(6): 20200761, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34102071

RESUMEN

Odonata species display a remarkable diversity of colour patterns, including intrasexual polymorphisms. In the damselfly (Ischnura senegalensis), the expression of a sex-determining transcription factor, the doublesex (Isdsx) gene is reportedly associated with female colour polymorphism (CP) (gynomorph for female-specific colour and andromorph for male-mimicking colour). Here, the function of Isdsx in thoracic coloration was investigated by electroporation-mediated RNA interference (RNAi). RNAi of the Isdsx common region in males and andromorphic females reduced melanization and thus changed the colour pattern into that of gynomorphic females, while the gynomorphic colour pattern was not affected. By contrast, RNAi against the Isdsx long isoform produced no changes, suggesting that the Isdsx short isoform is important for body colour masculinization in both males and andromorphic females. When examining the expression levels of five genes with differences between sexes and female morphs, two melanin-suppressing genes, black and ebony, were expressed at higher levels in the Isdsx RNAi body area than a control area. Therefore, the Isdsx short isoform may induce thoracic colour differentiation by suppressing black and ebony, thereby generating female CP in I. senegalensis. These findings contribute to the understanding of the molecular and evolutionary mechanisms underlying female CP in Odonata.


Asunto(s)
Proteínas de Insectos/genética , Odonata , Pigmentación/genética , Animales , Evolución Biológica , Femenino , Masculino
15.
Sci Rep ; 10(1): 16049, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994494

RESUMEN

Studying the mechanisms of the establishment of a population in a novel environment allows us to examine the process of local adaptations and subsequent range expansion. In a river system, detecting genetic or phenotypic differences between a freshwater and brackish water population could contribute to our understanding of the initial process of brackish water adaptation. Here, we investigated behavioural and gene expression responses to salt water in a freshwater and brackish water population of the freshwater snail, Semisulcospira reiniana. Although the individuals in brackish water exhibited significantly higher activity in saltwater than freshwater individuals just after sampling, the activity of freshwater individuals had increased in the second observation after rearing, suggesting that their salinity tolerance was plastic rather than genetic. We found 476 and 1002 differentially expressed genes across salinity conditions in the freshwater and brackish water populations, respectively. The major biological process involved in the salinity response of the freshwater population was the biosynthesis and metabolic processing of nitrogen-containing compounds, but that of the brackish water population was influenced by the chitin metabolic process. These results suggest that phenotypic plasticity induces adaptation to brackish water in the freshwater snail by modifying its physiological response to salinity.


Asunto(s)
Adaptación Biológica/genética , Estrés Salino/genética , Caracoles/genética , Aclimatación/fisiología , Adaptación Fisiológica , Animales , Evolución Biológica , Evolución Molecular , Agua Dulce , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Presión Osmótica , Aguas Salinas , Salinidad , Tolerancia a la Sal/fisiología , Transcriptoma/genética
16.
Trends Ecol Evol ; 35(10): 897-907, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32674869

RESUMEN

Evolutionary ecological theory suggests that selection arising from interactions with conspecifics, such as sexual and kin selection, may result in evolution of intraspecific conflicts and evolutionary 'tragedy of the commons'. Here, we propose that such an evolution of conspecific conflicts may affect population dynamics in a way that enhances species coexistence. Empirical evidence and theoretical models suggest that more abundant species is more susceptible to invasion of 'selfish' individuals that increase their own reproductive success at the expense of population growth (intraspecific adaptation load). The density-dependent intraspecific adaptation load gives rise to a self-regulation mechanism at the population level, and stabilizes species coexistence at the community level by negative frequency-dependence.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Aclimatación , Adaptación Fisiológica/genética , Humanos , Dinámica Poblacional , Reproducción
17.
New Phytol ; 227(6): 1872-1884, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32392621

RESUMEN

Niche conservatism is the tendency of lineages to retain the same niche as their ancestors. It constrains biological groups and prevents ecological divergence. However, theory predicts that niche conservatism can hinder gene flow, strengthen drift and increase local adaptation: does it mean that it also can facilitate speciation? Why does this happen? We aim to answer these questions. We examined the variation of chloroplast DNA, genome-wide single nucleotide polymorphisms, morphological traits and environmental variables across the Dioon merolae cycad populations. We tested geographical structure, scenarios of demographic history, and niche conservatism between population groups. Lineage divergence is associated with the presence of a geographical barrier consisting of unsuitable habitats for cycads. There is a clear genetic and morphological distinction between the geographical groups, suggesting allopatric divergence. However, even in contrasting available environmental conditions, groups retain their ancestral niche, supporting niche conservatism. Niche conservatism is a process that can promote speciation. In D. merolae, lineage divergence occurred because unsuitable habitats represented a barrier against gene flow, incurring populations to experience isolated demographic histories and disparate environmental conditions. This study explains why cycads, despite their ancient lineage origin and biological stasis, have been able to diversify into modern ecosystems worldwide.


Asunto(s)
Zamiaceae , Ecosistema , Especiación Genética , Geografía , México , Filogenia
18.
Ecol Evol ; 10(24): 14388-14393, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33391722

RESUMEN

Genetic diversity within a population, such as polymorphisms and personality, is considered to improve population performance because such intraspecific variations have the potential to alleviate the competition for a limited resource or the risk of predation and sexual harassment at a population level. Variation in the level and rhythm of daily activity in a population could also affect population performance by directly altering ecological, social, and sexual interactions among individuals. However, it remains to be elucidated whether such intra-population variation in the level and rhythms of daily activity exists in a natural population. Here, we investigated the genetic variation in daily activity within a single natural population of Drosophila immigrans. We established 21 isofemale lines from a single natural population and measured larval activity level and the level and daily pattern of adult activity over a 24 hr period. Larval activity level significantly varied among isofemale lines. Likewise, the activity level in the adult stage significantly varied among lines. The significant variation was also found in the daily pattern of adult activity; some lines showed greater activity level in the daytime, and others showed greater activity level in the night. Our results consistently suggest that there is a genetic variation in behavioral activity in a natural population, probably contributing to shaping the population performance.

19.
Biol Lett ; 15(7): 20190228, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31337289

RESUMEN

Polymorphisms in a population are expected to increase the growth rate and the stability of the population, leading to the expansion of geographical distribution and mitigation of extinction risk of a species. However, the generality of such ecological consequences of colour polymorphism remains uncertain. Here, via a comparative approach, we assessed whether colour polymorphisms influence climatic niche breadth and extinction risk in some groups of damselflies, butterflies and vertebrates. The climatic niche breadth was greater, and extinction risk was lower in polymorphic species than in monomorphic species in all taxa analysed. The results suggest that colour polymorphism facilitates range expansion and species persistence.


Asunto(s)
Mariposas Diurnas , Odonata , Animales , Color , Ecología , Ecosistema
20.
Biosci Biotechnol Biochem ; 83(9): 1721-1728, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31072263

RESUMEN

Daidai (bitter orange, Citrus aurantium) is characterized by its fresh citrus scent. In Japanese cuisine, its juice is an important ingredient. As tons of industrial waste is obtained while processing the daidai juice, additional utilization of this waste has great social value. In our study, we prepared the essential oil from the waste obtained during daidai juice processing and demonstrated that the oil activates human TRPA1 (hTRPA1). This oil contains 10 types of terpenes, all of which activated hTRPA1 with an EC50 value of 6-167 µM. To our knowledge, this study is the first to show a hTRPA1 activation by five terpenes: linalyl acetate, geranyl acetate, osthole, geranyl propionate, and neryl acetate. Because physiological benefits of TRPA1 agonists, such as enhancement of energy metabolism and promotion of skin barrier recovery, have been reported, the oil could be a promising ingredient for anti-obesity food products and cosmetics.


Asunto(s)
Citrus/química , Aceites Volátiles/química , Canal Catiónico TRPA1/agonistas , Terpenos/farmacología , Línea Celular , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...