Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 3(1): pgad446, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38170115

RESUMEN

Raltegravir (RAL), a human immunodeficiency virus (HIV)-1 integrase inhibitor, has been administered as part of antiretroviral therapy. Studies in patients with HIV-1 have shown high variability in the pharmacokinetics of RAL, and in healthy volunteers, coadministration of proton-pump inhibitors has been shown to increase the plasma RAL concentrations. Here, we found that RAL containing a 1,3,4-oxadiazole ring is converted to a hydrolysis product (H-RAL) with a cleaved 1,3,4-oxadiazole ring at pH 1.0 and 13.0 conditions in vitro, thereby reducing the anti-HIV activity of the drug. The inclusion of cyclodextrins (beta-cyclodextrin [ßCD], random methyl-ßCD [RAM-ßCD], and hydroxypropyl-ßCD [HP-ßCD]) can protect RAL from pH-induced changes. The conversion of RAL to H-RAL was detected by using various mass spectrometry analyses. The chromatogram of H-RAL increased in a time-dependent manner similar to another 1,3,4-oxadiazole-containing drug, zibotentan, using high-performance liquid chromatography. Oral bioavailability and target protein interactions of H-RAL were predicted to be lower than those of RAL. Moreover, H-RAL exhibited significantly reduced anti-HIV-1 activity, whereas combinations with ßCD, RAM-ßCD, and HP-ßCD attenuated this effect in cell-based assays. These findings suggest that ßCDs can potentially protect against the conversion of RAL to H-RAL under acidic conditions in the stomach, thereby preserving the anti-HIV-1 effect of RAL. Although clinical trials are needed for evaluation, we anticipate that protective devices such as ßCDs may improve the pharmacokinetics of RAL, leading to better treatment outcomes, including reduced dosing, long-term anti-HIV-1 activity, and deeper HIV-1 suppression.

2.
Sci Adv ; 9(28): eadg2955, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37436982

RESUMEN

Nuclear localization signal (NLS) of HIV-1 integrase (IN) is implicated in nuclear import of HIV-1 preintegration complex (PIC). Here, we established a multiclass drug-resistant HIV-1 variant (HIVKGD) by consecutively exposing an HIV-1 variant to various antiretroviral agents including IN strand transfer inhibitors (INSTIs). HIVKGD was extremely susceptible to a previously reported HIV-1 protease inhibitor, GRL-142, with IC50 of 130 femtomolar. When cells were exposed to HIVKGD IN-containing recombinant HIV in the presence of GRL-142, significant decrease of unintegrated 2-LTR circular cDNA was observed, suggesting that nuclear import of PIC was severely compromised by GRL-142. X-ray crystallographic analyses revealed that GRL-142 interacts with NLS's putative sequence (DQAEHLK) and sterically blocks the nuclear transport of GRL-142-bound HIVKGD's PIC. Highly INSTI-resistant HIV-1 variants isolated from heavily INSTI-experienced patients proved to be susceptible to GRL-142, suggesting that NLS-targeting agents would serve as salvage therapy agents for highly INSTI-resistant variant-harboring individuals. The data should offer a new modality to block HIV-1 infectivity and replication and shed light on developing NLS inhibitors for AIDS therapy.


Asunto(s)
Integrasa de VIH , VIH-1 , Humanos , Señales de Localización Nuclear/genética , VIH-1/genética , Integrasa de VIH/genética , Antivirales
3.
Nat Commun ; 14(1): 1076, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841831

RESUMEN

COVID-19 caused by SARS-CoV-2 has continually been serious threat to public health worldwide. While a few anti-SARS-CoV-2 therapeutics are currently available, their antiviral potency is not sufficient. Here, we identify two orally available 4-fluoro-benzothiazole-containing small molecules, TKB245 and TKB248, which specifically inhibit the enzymatic activity of main protease (Mpro) of SARS-CoV-2 and significantly more potently block the infectivity and replication of various SARS-CoV-2 strains than nirmatrelvir, molnupiravir, and ensitrelvir in cell-based assays employing various target cells. Both compounds also block the replication of Delta and Omicron variants in human-ACE2-knocked-in mice. Native mass spectrometric analysis reveals that both compounds bind to dimer Mpro, apparently promoting Mpro dimerization. X-ray crystallographic analysis shows that both compounds bind to Mpro's active-site cavity, forming a covalent bond with the catalytic amino acid Cys-145 with the 4-fluorine of the benzothiazole moiety pointed to solvent. The data suggest that TKB245 and TKB248 might serve as potential therapeutics for COVID-19 and shed light upon further optimization to develop more potent and safer anti-SARS-CoV-2 therapeutics.


Asunto(s)
Antivirales , COVID-19 , Proteasas 3C de Coronavirus , Inhibidores de Proteasas , SARS-CoV-2 , Animales , Humanos , Ratones , Antivirales/farmacología , Benzotiazoles , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores
4.
iScience ; 25(11): 105365, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36338434

RESUMEN

Potent and biostable inhibitors of the main protease (Mpro) of SARS-CoV-2 were designed and synthesized based on an active hit compound 5h (2). Our strategy was based not only on the introduction of fluorine atoms into the inhibitor molecule for an increase of binding affinity for the pocket of Mpro and cell membrane permeability but also on the replacement of the digestible amide bond by a surrogate structure to increase the biostability of the compounds. Compound 3 is highly potent and blocks SARS-CoV-2 infection in vitro without a viral breakthrough. The derivatives, which contain a thioamide surrogate in the P2-P1 amide bond of these compounds (2 and 3), showed remarkably preferable pharmacokinetics in mice compared with the corresponding parent compounds. These data show that compounds 3 and its biostable derivative 4 are potential drugs for treating COVID-19 and that replacement of the digestible amide bond by its thioamide surrogate structure is an effective method.

5.
Retrovirology ; 18(1): 30, 2021 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-34565409

RESUMEN

BACKGROUND: The genome of human immunodeficiency virus type 1 (HIV-1) is encapsulated in a core consisting of viral capsid proteins (CA). After viral entry, the HIV-1 core dissociates and releases the viral genome into the target cell, this process is called uncoating. Uncoating of HIV-1 core is one of the critical events in viral replication and several studies show that host proteins positively or negatively regulate this process by interacting directly with the HIV-1 CA. RESULTS: Here, we show that arginyl-tRNA-protein transferase 1 (ATE1) plays an important role in the uncoating process by governing the optimal core stability. Yeast two-hybrid screening of a human cDNA library identified ATE1 as an HIV-1-CA-interacting protein and direct interaction of ATE1 with Pr55gag and p160gag - pol via HIV-1 CA was observed by cell-based pull-down assay. ATE1 knockdown in HIV-1 producer cells resulted in the production of less infectious viruses, which have normal amounts of the early products of the reverse transcription reaction but reduced amounts of the late products of the reverse transcription. Interestingly, ATE1 overexpression in HIV-1 producer cells also resulted in the production of poor infectious viruses. Cell-based fate-of-capsid assay, a commonly used method for evaluating uncoating by measuring core stability, showed that the amounts of pelletable cores in cells infected with the virus produced from ATE1-knockdown cells increased compared with those detected in the cells infected with the control virus. In contrast, the amounts of pelletable cores in cells infected with the virus produced from ATE1-overexpressing cells decreased compared with those detected in the cells infected with the control virus. CONCLUSIONS: These results indicate that ATE1 expression levels in HIV-1 producer cells contribute to the adequate formation of a stable HIV-1 core. These findings provide insights into a novel mechanism of HIV-1 uncoating and revealed ATE1 as a new host factor regulating HIV-1 replication.


Asunto(s)
Aminoaciltransferasas/metabolismo , Cápside/química , Infecciones por VIH/enzimología , VIH-1/metabolismo , Aminoaciltransferasas/genética , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Infecciones por VIH/genética , Infecciones por VIH/fisiopatología , Infecciones por VIH/virología , VIH-1/química , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Estabilidad Proteica , Replicación Viral , Desencapsidación Viral
6.
Antimicrob Agents Chemother ; 65(10): e0103921, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34228546

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) capsid (CA) is an essential viral component of HIV-1 infection and an attractive therapeutic target for antivirals. Here, we report that a small molecule, ACAi-028, inhibits HIV-1 replication by targeting a hydrophobic pocket in the N-terminal domain of CA (CA-NTD). ACAi-028 is 1 of more than 40 candidate anti-HIV-1 compounds identified by in silico screening and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Our binding model showed that ACAi-028 interacts with the Q13, S16, and T19 amino acid residues, via hydrogen bonds, in the targeting pocket of CA-NTD. Using recombinant fusion methods, TZM-bl, time-of-addition, and colorimetric reverse transcriptase (RT) assays, the compound was found to exert anti-HIV-1 activity in the early stage between reverse transcription and proviral DNA integration, without any effect on RT activity in vitro, suggesting that this compound may affect HIV-1 core disassembly (uncoating) as well as a CA inhibitor, PF74. Moreover, electrospray ionization mass spectrometry (ESI-MS) also showed that the compound binds directly and noncovalently to the CA monomer. CA multimerization and thermal stability assays showed that ACAi-028 decreased CA multimerization and thermal stability via S16 or T19 residues. These results indicate that ACAi-028 is a new CA inhibitor by binding to the novel hydrophobic pocket in CA-NTD. This study demonstrates that a compound, ACAi-028, targeting the hydrophobic pocket should be a promising anti-HIV-1 inhibitor.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Fármacos Anti-VIH/farmacología , Cápside , Proteínas de la Cápside/genética , Humanos , Fenilalanina/farmacología , Replicación Viral
7.
Biochem Biophys Res Commun ; 549: 187-193, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33676187

RESUMEN

The cellular environment affects optimal viral replication because viruses cannot replicate without their host cells. In particular, metabolic resources such as carbohydrates, lipids, and ATP are crucial for viral replication, which is sensitive to cellular metabolism. Intriguingly, recent studies have demonstrated that human immunodeficiency virus type 1 (HIV-1) infection induces a metabolic shift from oxidative phosphorylation to aerobic glycolysis in CD4+ T cells to produce the virus efficiently. However, the importance of aerobic glycolysis in maintaining the quality of viral components and viral infectivity has not yet been fully investigated. Here, we show that aerobic glycolysis is necessary not only to override the inhibitory effect of virion-incorporated glycolytic enzymes, but also to maintain the enzymatic activity of reverse transcriptase and the adequate packaging of envelope proteins into HIV-1 particles. To investigate the effect of metabolic remodeling on the phenotypic properties of HIV-1 produced by infected cells, we replaced glucose with galactose in the culture medium because the cells grown in galactose-containing medium are forced to carry out oxidative metabolism instead of aerobic glycolysis. We found that the packaging levels of glyceraldehyde 3-phosphate dehydrogenase, alpha-enolase and pyruvate kinase muscle type 2, which decrease HIV-1 infectivity by packaging into viral particles, are increased in progeny viruses produced by the cells grown in galactose-containing medium. Furthermore, we found that the entry and reverse transcription efficiency of the progeny viruses were reduced, which was caused by a decrease in the enzymatic activity of reverse transcriptase in the viral particles and a decrease in the packaging levels of envelope proteins and reverse transcriptase. These results indicate that the aerobic glycolysis environment in HIV-1-infected cells may contribute to the quality control of viruses.


Asunto(s)
Glucosa/metabolismo , Glucólisis , VIH-1/patogenicidad , Virión/metabolismo , Aerobiosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Medios de Cultivo , Proteínas de Unión al ADN/metabolismo , Galactosa/farmacología , Productos del Gen env/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Glucólisis/efectos de los fármacos , VIH-1/efectos de los fármacos , VIH-1/genética , Humanos , Proteínas de la Membrana/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Transcripción Reversa/efectos de los fármacos , Transcripción Reversa/genética , Hormonas Tiroideas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Empaquetamiento del Genoma Viral/efectos de los fármacos , Proteínas de Unión a Hormona Tiroide
8.
Nat Commun ; 12(1): 668, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510133

RESUMEN

Except remdesivir, no specific antivirals for SARS-CoV-2 infection are currently available. Here, we characterize two small-molecule-compounds, named GRL-1720 and 5h, containing an indoline and indole moiety, respectively, which target the SARS-CoV-2 main protease (Mpro). We use VeroE6 cell-based assays with RNA-qPCR, cytopathic assays, and immunocytochemistry and show both compounds to block the infectivity of SARS-CoV-2 with EC50 values of 15 ± 4 and 4.2 ± 0.7 µM for GRL-1720 and 5h, respectively. Remdesivir permitted viral breakthrough at high concentrations; however, compound 5h completely blocks SARS-CoV-2 infection in vitro without viral breakthrough or detectable cytotoxicity. Combination of 5h and remdesivir exhibits synergism against SARS-CoV-2. Additional X-ray structural analysis show that 5h forms a covalent bond with Mpro and makes polar interactions with multiple active site amino acid residues. The present data suggest that 5h might serve as a lead Mpro inhibitor for the development of therapeutics for SARS-CoV-2 infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasa de Coronavirus/farmacología , SARS-CoV-2/efectos de los fármacos , Proteasas Virales/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Humanos , Indoles/farmacología , Piridinas/farmacología , Células Vero , Proteasas Virales/metabolismo
9.
J Hepatol ; 74(5): 1075-1086, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33333207

RESUMEN

BACKGROUND & AIMS: While certain nucleos(t)ide reverse transcriptase inhibitors (NRTIs) are efficacious in treating HBV infection, their effects are yet to be optimized and the emergence of NRTI-resistant HBV variants is an issue because of the requirement for lifelong treatment. The development of agents that more profoundly suppress wild-type and drug-resistant HBVs, and that have a long-acting effect, are crucial to improve patient outcomes. METHODS: Herein, we synthesized a novel long-acting 4'-modified NRTI termed E-CFCP. We tested its anti-HBV activity in vitro, before evaluating its anti-HBV activity in HBV-infected human-liver-chimeric mice (PXB-mice). E-CFCP's long-acting features and E-CFCP-triphosphate's interactions with the HBV reverse transcriptase (HBV-RT) were examined. RESULTS: E-CFCP potently blocked HBVWTD1 production (IC50qPCR_cell=1.8 nM) in HepG2.2.15 cells and HBVWTC2 (IC50SB_cell=0.7 nM), entecavir (ETV)-resistant HBVETV-RL180M/S202G/M204V (IC50SB_cell=77.5 nM), and adefovir-resistant HBVADV-RA181T/N236T production (IC50SB_cell=14.1 nM) in Huh7 cells. E-CFCP profoundly inhibited intracellular HBV DNA production to below the detection limit, but ETV and tenofovir alafenamide (TAF) failed to do so. E-CFCP also showed less toxicity than ETV and TAF. E-CFCP better penetrated hepatocytes and was better tri-phosphorylated; E-CFCP-triphosphate persisted intracellularly for longer than ETV-triphosphate. Once-daily peroral E-CFCP administration over 2 weeks (0.02~0.2 mg/kg/day) reduced HBVWTC2-viremia by 2-3 logs in PXB-mice without significant toxicities and the reduction persisted over 1-3 weeks following treatment cessation, suggesting once-weekly dosing capabilities. E-CFCP also reduced HBVETV-RL180M/S202G/M204V-viremia by 2 logs over 2 weeks, while ETV completely failed to reduce HBVETV-RL180M/S202G/M204V-viremia. E-CFCP's 4'-cyano and fluorine interact with both HBVWT-RT and HBVETV-RL180M/S202G-M204 -RT via Van der Waals and polar forces, being important for E-CFCP-triphosphate's interactions and anti-HBV potency. CONCLUSION: E-CFCP represents the first reported potential long-acting NRTI with potent activity against wild-type and treatment-resistant HBV. LAY SUMMARY: Although there are currently effective treatment options for HBV, treatment-resistant variants and the need for lifelong therapy pose a significant challenge. Therefore, the development of new treatment options is crucial to improve outcomes and quality of life. Herein, we report preclinical evidence showing that the anti-HBV agent, E-CFCP, has potent activity against wild-type and treatment-resistant variants. In addition, once-weekly oral dosing may be possible, which is preferrable to the current daily dosing regimens.


Asunto(s)
Desarrollo de Medicamentos/métodos , Farmacorresistencia Viral/efectos de los fármacos , Virus de la Hepatitis B , Hepatitis B , Inhibidores de la Transcriptasa Inversa/farmacología , Animales , Preparaciones de Acción Retardada/farmacología , Modelos Animales de Enfermedad , Vías de Administración de Medicamentos , Esquema de Medicación , Hepatitis B/tratamiento farmacológico , Hepatitis B/virología , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/fisiología , Humanos , Ratones , ADN Polimerasa Dirigida por ARN/metabolismo , Tiempo
10.
Retrovirology ; 17(1): 31, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917235

RESUMEN

BACKGROUND: A protein exhibiting more than one biochemical function is termed a moonlighting protein. Glycolytic enzymes are typical moonlighting proteins, and these enzymes control the infection of various viruses. Previously, we reported that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and alpha-enolase (ENO1) are incorporated into human immunodeficiency virus type 1 (HIV-1) particles from viral producer cells and suppress viral reverse transcription independently each other. However, it remains unclear whether these proteins expressed in viral target cells affect the early phase of HIV-1 replication. RESULTS: Here we show that the GAPDH expression level in viral target cells does not affect the early phase of HIV-1 replication, but ENO1 has a capacity to suppress viral integration in viral target cells. In contrast to GAPDH, suppression of ENO1 expression by RNA interference in the target cells increased viral infectivity, but had no effect on the expression levels of the HIV-1 receptors CD4, CCR5 and CXCR4 and on the level of HIV-1 entry. Quantitative analysis of HIV-1 reverse transcription products showed that the number of copies of the late products (R/gag) and two-long-terminal-repeat circular forms of viral cDNAs did not change but that of the integrated (Alu-gag) form increased. In contrast, overexpression of ENO1 in viral target cells decreased viral infectivity owing to the low viral integration efficiency. Results of subcellular fractionation experiments suggest that the HIV integration at the nucleus was negatively regulated by ENO1 localized in the nucleus. In addition, the overexpression of ENO1 in both viral producer cells and target cells most markedly suppressed the viral replication. CONCLUSIONS: These results indicate that ENO1 in the viral target cells prevents HIV-1 integration. Importantly, ENO1, but not GAPDH, has the bifunctional inhibitory activity against HIV-1 replication. The results provide and new insights into the function of ENO1 as a moonlighting protein in HIV-1 infection.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Unión al ADN/metabolismo , VIH-1/fisiología , Fosfopiruvato Hidratasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Integración Viral/fisiología , Biomarcadores de Tumor/genética , Línea Celular , Núcleo Celular/metabolismo , ADN Viral/metabolismo , Proteínas de Unión al ADN/genética , Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Infecciones por VIH/virología , Humanos , Fosfopiruvato Hidratasa/genética , Transcripción Reversa , Proteínas Supresoras de Tumor/genética , Replicación Viral
11.
mBio ; 11(4)2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32820005

RESUMEN

We assessed various newly generated compounds that target the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and various previously known compounds reportedly active against SARS-CoV-2, employing RNA quantitative PCR (RNA-qPCR), cytopathicity assays, and immunocytochemistry. Here, we show that two indole-chloropyridinyl-ester derivatives, GRL-0820 and GRL-0920, exerted potent activity against SARS-CoV-2 in cell-based assays performed using VeroE6 cells and TMPRSS2-overexpressing VeroE6 cells. While GRL-0820 and the nucleotide analog remdesivir blocked SARS-CoV-2 infection, viral breakthrough occurred. No significant anti-SARS-CoV-2 activity was found for several compounds reportedly active against SARS-CoV-2 such as lopinavir, nelfinavir, nitazoxanide, favipiravir, and hydroxychroloquine. In contrast, GRL-0920 exerted potent activity against SARS-CoV-2 (50% effective concentration [EC50] = 2.8 µM) and dramatically reduced the infectivity, replication, and cytopathic effect of SARS-CoV-2 without significant toxicity as examined with immunocytochemistry. Structural modeling shows that indole and chloropyridinyl of the derivatives interact with two catalytic dyad residues of Mpro, Cys145 and His41, resulting in covalent bonding, which was verified using high-performance liquid chromatography-mass spectrometry (HPLC/MS), suggesting that the indole moiety is critical for the anti-SARS-CoV-2 activity of the derivatives. GRL-0920 might serve as a potential therapeutic for coronavirus disease 2019 (COVID-19) and might be optimized to generate more-potent anti-SARS-CoV-2 compounds.IMPORTANCE Targeting the main protease (Mpro) of SARS-CoV-2, we identified two indole-chloropyridinyl-ester derivatives, GRL-0820 and GRL-0920, active against SARS-CoV-2, employing RNA-qPCR and immunocytochemistry and show that the two compounds exerted potent activity against SARS-CoV-2. While GRL-0820 and remdesivir blocked SARS-CoV-2 infection, viral breakthrough occurred as examined with immunocytochemistry. In contrast, GRL-0920 completely blocked the infectivity and cytopathic effect of SARS-CoV-2 without significant toxicity. Structural modeling showed that indole and chloropyridinyl of the derivatives interacted with two catalytic dyad residues of Mpro, Cys145 and His41, resulting in covalent bonding, which was verified using HPLC/MS. The present data should shed light on the development of therapeutics for COVID-19, and optimization of GRL-0920 based on the present data is essential to develop more-potent anti-SARS-CoV-2 compounds for treating COVID-19.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Indoles/farmacología , Neumonía Viral/tratamiento farmacológico , Secuencia de Aminoácidos , Animales , Betacoronavirus/enzimología , COVID-19 , Chlorocebus aethiops , Cloroquina/farmacología , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Indoles/química , Indoles/uso terapéutico , Modelos Moleculares , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Células Vero , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
12.
Biol Pharm Bull ; 43(8): 1202-1209, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32741940

RESUMEN

The effective antigen (Ag) uptake by microfold cells (M-cells) is important for the induction of an efficient mucosal immune responses. Here, we show that 10-hydroxydecanoic acid (10-HDAA) from royal jelly (RJ) potentially supports M-cell differentiation and induces effective antigen-specific mucosal immune responses in cynomolgus macaques. 10-HDAA increases the expression level of receptor activator of nuclear factor-kappaB (NF-κB) (RANK) in Caco-2 cells, which suggests that 10-HDAA potentially prompts the differentiation of Caco-2 cells into M-cells and increased transcytosis efficiency. This idea is supported by the following observations. Intranasal administration of 10-HDAA increased the number of M-cells in the epithelium overlying nasopharynx-associated lymphoid tissue (NALT) in macaques. Oral administration of 10-HDAA increased the number of M-cells in the follicle-associated epithelium (FAE) covering Peyer's patches (PPs) and significantly increased the antigen-specific immunoglobulin A (IgA) level in macaques. These findings suggest that the exogenous honeybee-derived medium-chain fatty acid 10-HDAA may effectively enhance antigen-specific immune responses.


Asunto(s)
Ácidos Decanoicos/farmacología , Inmunidad Mucosa/efectos de los fármacos , Inmunoglobulina A/biosíntesis , Animales , Antígenos/inmunología , Células CACO-2 , Diferenciación Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Humanos , Mucosa Intestinal/inmunología , Macaca fascicularis , Masculino , Ligando RANK/genética
13.
Biol Pharm Bull ; 41(4): 612-618, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29607934

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) recruits diverse cellular factors into viral particles during its morphogenesis, which apparently play roles in modulating its infectivity. In our study, proteomic techniques demonstrated that a key glycolytic protein, pyruvate kinase muscle type 2 (PKM2), is incorporated into viral particles. Here, we show that virion-packaged PKM2 significantly reduces viral infectivity by affecting the incorporation level of a cellular tRNALys3 into virions. Enhanced expression of PKM2 in HIV-1-producing cells led to a higher incorporation level of PKM2 into progeny virions without affecting the viral maturation process. Compared with the control virus, the high-level-PKM2-packaging virus showed decreased levels of both reverse transcription products and cellular tRNALys3 packaging, suggesting that the shortage of intravirion tRNALys3 suppresses reverse transcription efficiency in target cells. Interestingly, the enhanced expression of PKM2 also suppressed the virion recruitment of other nonpriming cellular tRNAs such as tRNALys1,2 and tRNAAsn, which are known to be selectively packaged into virions, without affecting the steady level of the cytoplasmic pool of those tRNAs in producer cells, suggesting that PKM2 specifically impedes the selective incorporation of tRNAs into virions. Taken together, our findings indicate that PKM2 is a vital host factor that negatively affects HIV-1 infectivity by targeting the tRNALys3-mediated initiation of reverse transcription in target cells.


Asunto(s)
VIH-1/fisiología , Piruvato Quinasa/fisiología , Células HEK293 , Humanos , Piruvato Quinasa/genética , ARN de Transferencia , Transcripción Reversa , Virión/fisiología , Ensamble de Virus , Internalización del Virus
14.
Biochem Biophys Res Commun ; 495(2): 1846-1850, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29197575

RESUMEN

Our previous study showed that the phosphorylation of a highly conserved serine residue, Ser16 in the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein is promoted by virion-incorporated extracellular signal-regulated kinase 2 (ERK2) and required for proper peptidyl-prolyl isomerase (Pin1)-mediated uncoating. Interestingly, western blot analysis demonstrated that phosphorylated/activated mitogen-activated protein kinase kinase 1/2 (MEK1/2), the upstream activator of ERK2, as well as ERK2 are incorporated into virions. Here, we show that the MEK1/2 selective allosteric inhibitor Trametinib reduces HIV-1 infectivity via the decrease in virion-incorporated ERK2 phosphorylation. The treatment of chronic HIV-1-infected T-cell line, CEM/LAV-1 cells with Trametinib results in a decrease in ERK2 phosphorylation in the virions. The viruses have relatively low infectivity and impaired reverse transcription. Cell-based fate-of-capsid uncoating assay showed that the reduction in infectivity was caused by a functional impairment of the uncoating process. Furthermore, the viruses from Trametinib-treated CEM/LAV-1 cells also showed decreased reverse transcription efficiency and attenuated multiple rounds of replication in human peripheral blood mononuclear cells (PBMCs). Taken together, these findings suggest that Trametinib suppresses HIV-1 replication by abrogating the proper disassembly of CA core.


Asunto(s)
Cápside/fisiología , VIH-1/efectos de los fármacos , VIH-1/fisiología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Piridonas/administración & dosificación , Pirimidinonas/administración & dosificación , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología , Cápside/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Fosforilación/efectos de los fármacos
15.
Elife ; 62017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29039736

RESUMEN

Antiretroviral therapy for HIV-1 infection/AIDS has significantly extended the life expectancy of HIV-1-infected individuals and reduced HIV-1 transmission at very high rates. However, certain individuals who initially achieve viral suppression to undetectable levels may eventually suffer treatment failure mainly due to adverse effects and the emergence of drug-resistant HIV-1 variants. Here, we report GRL-142, a novel HIV-1 protease inhibitor containing an unprecedented 6-5-5-ring-fused crown-like tetrahydropyranofuran, which has extremely potent activity against all HIV-1 strains examined with IC50 values of attomolar-to-picomolar concentrations, virtually no effects on cellular growth, extremely high genetic barrier against the emergence of drug-resistant variants, and favorable intracellular and central nervous system penetration. GRL-142 forms optimum polar, van der Waals, and halogen bond interactions with HIV-1 protease and strongly blocks protease dimerization, demonstrating that combined multiple optimizing elements significantly enhance molecular and atomic interactions with a target protein and generate unprecedentedly potent and practically favorable agents.


Asunto(s)
Inhibidores de la Proteasa del VIH/farmacología , VIH-1/efectos de los fármacos , Animales , Células Cultivadas , Sistema Nervioso Central/química , Farmacorresistencia Viral , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/aislamiento & purificación , Inhibidores de la Proteasa del VIH/farmacocinética , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Unión Proteica , Ratas
16.
Biochem Biophys Res Commun ; 484(2): 278-284, 2017 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-28115157

RESUMEN

Human immunodeficiency virus type-1 (HIV-1) particles contain not only viral-encoded but also host-encoded proteins. Interestingly, several studies showed that host proteins play a critical role in viral infectivity, replication and/or immunoreactivity in the next target cells. Here, we show that alpha-enolase (ENO1) is incorporated into HIV-1 virions and the virion-incorporated ENO1 prevents the early stage of HIV-1 reverse transcription. We found that viral particles contain two isoforms of ENO1 with different isoelectric points by two-dimensional electrophoresis. Suppression of ENO1 expression by RNA interference in the HIV-1 producer cells decreased ENO1 incorporation into virions without altering the packaging of viral structural proteins and viral production but increased viral infectivity. Although the low-level-ENO1-packaging virus maintained comparable levels of reverse transcriptase activity, viral genomic RNA and tRNALys3 packaging to the control virus, its levels of early cDNA products of reverse transcription were higher than those of the control virus. In contrast, the high-level-ENO1-packaging virus, which was produced from ENO1-overexpressing cells, showed decreased infectivity and the levels of early cDNA products. Taken together, these findings reveal a novel function of ENO1 as a negative regulation factor targeting HIV-1 reverse transcription.


Asunto(s)
VIH-1/fisiología , Fosfopiruvato Hidratasa/metabolismo , Transcripción Reversa , Virión/fisiología , Línea Celular , VIH-1/enzimología , VIH-1/patogenicidad , Humanos , Fosfopiruvato Hidratasa/genética , Interferencia de ARN , Virión/enzimología , Ensamble de Virus
17.
Biochem Biophys Rep ; 8: 325-332, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28955972

RESUMEN

Human immunodeficiency virus type-1 (HIV-1) requires the packaging of human tRNALys3 as a primer for effective viral reverse transcription. Previously, we reported that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) suppresses the packaging efficiency of tRNALys3. Although the binding of GAPDH to Pr55 gag is important for the suppression mechanism, it remains unclear which domain of GAPDH is responsible for the interaction with Pr55 gag . In this study, we show that Asp256, Lys260, Lys263 and Glu267 of GAPDH are important for the suppression of tRNALys3 packaging. Yeast two-hybrid analysis demonstrated that the C-terminal domain of GAPDH (151-335) interacts with both the matrix region (MA; 1-132) and capsid N-terminal domain (CA-NTD; 133-282). The D256R, K263E or E267R mutation of GAPDH led to the loss of the ability to bind to wild-type (WT) MA, and the D256R/K260E double mutation of GAPDH resulted in the loss of detectable binding activity to WT CA-NTD. In contrast, R58E, Q59A or Q63A of MA, and E76R or R82E of CA-NTD abrogated the interaction with the C-terminal domain of GAPDH. Multiple-substituted GAPDH mutant (D256R/K260E/K263E/E267R) retained the oligomeric formation with WT GAPDH in HIV-1 producing cells, but the incorporation level of the hetero-oligomer was decreased in viral particles. Furthermore, the viruses produced from cells expressing the D256R/K260E/K263E/E267R mutant restored tRNALys3 packaging efficiency because the mutant exerted a dominant negative effect by preventing WT GAPDH from binding to MA and CA-NTD and improved the reverse transcription. These findings indicate that the amino acids Asp256, Lys260, Lys263 and Glu267 of GAPDH is essential for the mechanism of tRNALys3-packaging suppression and the D256R/K260E/K263E/E267R mutant of GAPDH acts in a dominant negative manner to suppress tRNALys3 packaging.

18.
Retrovirology ; 12: 97, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26577226

RESUMEN

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) must take advantage of its own proteins with two or more functions to successfully replicate. Although many attempts have been made to determine the function of viral proteins encoded in the HIV-1 genome, the role of the p2 peptide, a spacer between the capsid and the nucleocapsid in HIV-1 Gag in early-phase HIV infection still remains unclarified. RESULTS: In this study, we show that the p2 peptide enhances HIV-1 acute infection by increasing intracellular ATP production via the activation of mitochondrial cytochrome c oxidase (MT-CO) involved in the respiratory chain. We found that cell-permeable p2-peptide-treated cells were more effectively infected by HIV-1 than control cells. To characterize the effect of the p2 peptide on HIV-1 replication in MAGIC-5 cells, various HIV-1 cDNA products were measured by quantitative real-time PCR. The levels of the late (R/gag), 2-LTR circular (2-LTR), and integrated (Alu) forms of viral cDNAs increased in the presence of the p2 peptide. Interestingly, yeast two-hybrid analysis revealed a novel interaction between the p2 peptide and the mitochondrial intermembrane space domain (N(214)-F(235)) of MT-CO subunit I (MT-CO1). Mutational analysis indicated that Gln(6) in the p2 peptide is important for the interaction with MT-CO1. The p2 peptide activated MT-CO1 in vitro in a concentration-dependent manner, and fluorescence-microscopy analysis demonstrated that the p2 peptide had a significant effect on mitochondrial targeting. Furthermore, the analysis of HIV-1 lacking a functional p2 peptide demonstrated the inhibition of intracellular ATP production in MT-4 cells and monocyte-derived macrophages (MDMs) and a decrease in reverse transcription efficiency following infection of MT-4 cells and MDMs. CONCLUSIONS: These findings provide evidence that the p2 peptide is a viral positive allosteric modulator of MT-CO and the increased intracellular ATP production after HIV infection in a p2-peptide-dependent manner is essential for efficient reverse transcription in early-phase HIV-1 infection.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Complejo IV de Transporte de Electrones/fisiología , VIH-1/genética , VIH-1/fisiología , Humanos , Macrófagos/virología , Mitocondrias/enzimología , Fragmentos de Péptidos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Reversa , Técnicas del Sistema de Dos Híbridos , Regulación hacia Arriba , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
19.
Biochem Biophys Res Commun ; 463(4): 988-93, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26074144

RESUMEN

N-myristoyltransferase (NMT) catalyzes protein N-myristoylation. It has been suggested that the isozyme NMT1 enhances the replication of human immunodeficiency virus type-1 (HIV-1). However, the details of the mechanism by which NMT1 does so remain unclear. In this study, we investigated NMT1-binding proteins by co-immunoprecipitation and mass spectrometry. As a result, several RNA-binding proteins including ribosomal proteins, NMT isozymes, and hnRNP A2/B1 were observed to bind to NMT1, as mediated mainly by RNA. Interestingly, only hRNP A2/B1 was found to associate with NMT1 without mediation by RNA. It was also suggested that hnRNP A2/B1 contributes to the formation of complexes of high molecular weights involving NMT1. Knockdown of hnRNP A2/B1 resulted in the enhancement of viral replication with an increase in the expression level of viral RNA in HIV-1-producing cells. On the other hand, knockdown of NMT1 resulted in the attenuation of viral replication with the decrease in the expression level of viral RNA in HIV-1-producing cells. Additionally, overexpression of NMT1 induced the enhancement of viral replication with the increase in the expression level of the viral RNA. These findings suggest that both NMT1 and hnRNP A2/B1 take part in the regulation of HIV-1 RNA expression through their mutual opposite effects on the viral RNA expression in HIV-1-producing cells.


Asunto(s)
Aciltransferasas/fisiología , Regulación Viral de la Expresión Génica , VIH-1/fisiología , ARN Viral/genética , Replicación Viral/fisiología , Aciltransferasas/metabolismo , Células HEK293 , VIH-1/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Unión Proteica
20.
Virol J ; 11: 222, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25519983

RESUMEN

BACKGROUND: One of the major functions of Nef is in the enhancement of the infectivity of the human and simian immunodeficiency viruses (HIV and SIV, respectively). However, the detailed mechanism of the enhancement of viral infectivity by Nef remains unclear. Additionally, studies of mechanisms by which Nef enhances the infectivity of SIV are not as intensive as those of HIV-1. METHODS: We generated short-lived Nef constructed by fusing Nef to a proteasome-mediated protein degradation sequence to characterize the Nef role in viral infectivity. RESULTS: The apparent expression level of the short-lived Nef was found to be extremely lower than that of the wild-type Nef. Moreover, the expression level of the short-lived Nef increased with the treatment with a proteasome inhibitor. The infectivity of HIV-1 with the short-lived Nef was significantly lower than that with the wild-type Nef. On the other hand, the short-lived Nef enhanced the infectivity of SIVmac239, an ability observed to be interestingly equivalent to that of the wild-type Nef. The short-lived Nef was not detected in SIVmac239, but the wild-type Nef was, suggesting that the incorporation of Nef into SIVmac239 is not important for the enhancement of SIVmac239 infectivity. CONCLUSIONS: Altogether, the findings suggest that the mechanisms of infectivity enhancement by Nef are different between HIV-1 and SIVmac239. Lastly, we propose the following hypothesis: even when the expression level of a protein is extremely low, the protein may still be sufficiently functional.


Asunto(s)
VIH-1/fisiología , Virus de la Inmunodeficiencia de los Simios/fisiología , Proteínas Reguladoras y Accesorias Virales/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/crecimiento & desarrollo , VIH-1/patogenicidad , Humanos , Virus de la Inmunodeficiencia de los Simios/crecimiento & desarrollo , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...