Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Med ; 18(4): 612-7, 2012 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-22426420

RESUMEN

During fasting, induction of hepatic gluconeogenesis is crucial to ensure proper energy homeostasis. Such induction is dysregulated in type 2 diabetes, resulting in the development of fasting hyperglycemia. Hormonal and nutrient regulation of metabolic adaptation during fasting is mediated predominantly by the transcriptional coactivator peroxisome proliferative activated receptor γ coactivator 1α (PGC-1α) in concert with various other transcriptional regulators. Although CITED2 (CBP- and p300-interacting transactivator with glutamic acid- and aspartic acid-rich COOH-terminal domain 2) interacts with many of these molecules, the role of this protein in the regulation of hepatic gluconeogenesis was previously unknown. Here we show that CITED2 is required for the regulation of hepatic gluconeogenesis through PGC-1α. The abundance of CITED2 was increased in the livers of mice by fasting and in cultured hepatocytes by glucagon-cAMP-protein kinase A (PKA) signaling, and the amount of CITED2 in liver was higher in mice with type 2 diabetes than in non-diabetic mice. CITED2 inhibited the acetylation of PGC-1α by blocking its interaction with the acetyltransferase general control of amino acid synthesis 5-like 2 (GCN5). The consequent downregulation of PGC-1α acetylation resulted in an increase in its transcriptional coactivation activity and an increased expression of gluconeogenic genes. The interaction of CITED2 with GCN5 was disrupted by insulin in a manner that was dependent on phosphoinositide 3-kinase (PI3K)-thymoma viral proto-oncogene (Akt) signaling. Our results show that CITED2 functions as a transducer of glucagon and insulin signaling in the regulation of PGC-1α activity that is associated with the transcriptional control of gluconeogenesis and that this function is mediated through the modulation of GCN5-dependent PGC-1α acetylation. We also found that loss of hepatic CITED2 function suppresses gluconeogenesis in diabetic mice, suggesting it as a therapeutic target for hyperglycemia.


Asunto(s)
Gluconeogénesis/fisiología , Glucosa/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Transactivadores/metabolismo , Acetilación/efectos de los fármacos , Acetiltransferasas/metabolismo , Adenoviridae/genética , Animales , Células Cultivadas , Cromonas/farmacología , AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Gluconeogénesis/genética , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfolinas/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores de Leptina/deficiencia , Proteínas Represoras/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirtuinas/genética , Sirtuinas/metabolismo , Transactivadores/genética , Factores de Transcripción , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
2.
Kobe J Med Sci ; 54(1): E14-22, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18772605

RESUMEN

Insulin induces translocation of the glucose transporter GLUT4 from intracellular storage compartment to the plasma membrane via complex mechanisms that require intact cytoskeletal networks. In cultured adipocytes, conventional kinesin motor proteins have been proposed to mediate GLUT4 movements on microtubules. It remains, however, unclear whether kinesin motor system plays a similar regulatory role in myocytes. We addressed this issue using C2C12 myoblasts, which have now been shown to express both heavy and light chains of conventional kinesin. In these cells, overexpression of either wild-type kinesin light chain 2 (KLC2) or its phosphorylation-defective mutant did not significantly affect insulin-stimulated translocation of exofacial Myc-tagged GLUT4-green fluorescent protein to the cell surface and its subsequent externalization. Likewise, a dominant-negative mutant of KLC2 had no marked effect on GLUT4 movements in this cell type. These results suggest that conventional kinesin is dispensable for insulin-induced GLUT4 translocation in cultured myoblasts and may thus reveal a cell-type specific role of the microtubules-based cytoskeleton in glucose transport in response to insulin.


Asunto(s)
Transportador de Glucosa de Tipo 4/metabolismo , Insulina/farmacología , Cinesinas/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Proteínas 14-3-3/metabolismo , Animales , Línea Celular , Cricetinae , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Transportador de Glucosa de Tipo 4/genética , Humanos , Cinesinas/genética , Ratones , Mutación/genética , Fosforilación , Unión Proteica , Transporte de Proteínas , Transducción de Señal
3.
Nat Med ; 14(2): 188-93, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18204460

RESUMEN

Insulin receptor substrate (IRS)-1 and IRS-2 have dominant roles in the action of insulin, but other substrates of the insulin receptor kinase, such as Gab1, c-Cbl, SH2-B and APS, are also of physiological relevance. Although the protein downstream of tyrosine kinases-1 (Dok1) is known to function as a multisite adapter molecule in insulin signaling, its role in energy homeostasis has remained unclear. Here we show that Dok1 regulates adiposity. Expression of Dok1 in white adipose tissue was markedly increased in mice fed a high-fat diet, whereas adipocytes lacking this adapter were smaller and showed a reduced hypertrophic response to this dietary manipulation. Dok1-deficient mice were leaner and showed improved glucose tolerance and insulin sensitivity compared with wild-type mice. Embryonic fibroblasts from Dok1-deficient mice were impaired in adipogenic differentiation, and this defect was accompanied by an increased activity of the protein kinase ERK and a consequent increase in the phosphorylation of peroxisome proliferator-activated receptor (PPAR)-gamma on Ser112. Mutation of this negative regulatory site for the transactivation activity of PPAR-gamma blocked development of the lean phenotype caused by Dok1 ablation. These results indicate that Dok1 promotes adipocyte hypertrophy by counteracting the inhibitory effect of ERK on PPAR-gamma and may thus confer predisposition to diet-induced obesity.


Asunto(s)
Adipocitos/patología , Proteínas de Unión al ADN/metabolismo , Dieta , Ácidos Grasos/farmacología , Obesidad/patología , PPAR gamma/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/patología , Adiposidad/efectos de los fármacos , Animales , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Glucosa/metabolismo , Hipertrofia , Insulina/metabolismo , Ratones , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Proteínas de Unión al ARN/genética , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...