Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 155
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167249, 2024 May 18.
Article En | MEDLINE | ID: mdl-38768929

RET fusion is an oncogenic driver in 1-2 % of patients with non-small cell lung cancer (NSCLC). Although RET-positive tumors have been treated with multikinase inhibitors such as vandetanib or RET-selective inhibitors, ultimately resistance to them develops. Here we established vandetanib resistance (VR) clones from LC-2/ad cells harboring CCDC6-RET fusion and explored the molecular mechanism of the resistance. Each VR clone had a distinct phenotype, implying they had acquired resistance via different mechanisms. Consistently, whole exome-seq and RNA-seq revealed that the VR clones had unique mutational signatures and expression profiles, and shared only a few common remarkable events. AXL and IGF-1R were activated as bypass pathway in different VR clones, and sensitive to a combination of RET and AXL inhibitors or IGF-1R inhibitors, respectively. SMARCA4 loss was also found in a particular VR clone and 55 % of post-TKI lung tumor tissues, being correlated with higher sensitivity to SMARCA4/SMARCA2 dual inhibition and shorter PFS after subsequent treatments. Finally, we detected an increased number of damaged mitochondria in one VR clone, which conferred sensitivity to mitochondrial electron transfer chain inhibitors. Increased mitochondria were also observed in post-TKI biopsy specimens in 13/20 cases of NSCLC, suggesting a potential strategy targeting mitochondria to treat resistant tumors. Our data propose new promising therapeutic options to combat resistance to RET inhibitors in NSCLC.

2.
Org Biomol Chem ; 22(16): 3262-3267, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38568183

Despite their utility as directing groups, the C-C bond cleavage of cyclopropanes utilizing hydrazones has not been explored. Herein, Pd-catalyzed C-C bond cleavage reaction of N-cyclopropyl acylhydrazones, followed by cycloisomerization to yield pyrazoles, has been developed. The protocol enables the synthesis of various α-pyrazole carbonyl compounds, which have a potential of biological activity. Control experiments and DFT calculations suggest that ß-carbon elimination of a stable 6-membered chelate palladium complex occurs, generating a conjugated azine as a reaction intermediate for the following cycloisomerization.

4.
Chem Pharm Bull (Tokyo) ; 72(4): 413-420, 2024.
Article En | MEDLINE | ID: mdl-38684408

A diazo-, metal-, and base-free multi-substituted hydrazone synthesis via a formal reductive N-H bond insertion reactions of hydrazones to α-keto esters has been developed. The protocol features a broad substrate scope and good functional group tolerance, providing N-H bond insertion products in moderate to excellent yields. Moreover, P(III)-mediated N-H functionalization of pharmaceutical containing hydrazone moiety was also successfully achieved.


Esters , Hydrazones , Hydrazones/chemistry , Hydrazones/chemical synthesis , Esters/chemistry , Esters/chemical synthesis , Molecular Structure , Oxidation-Reduction , Ketones/chemistry , Ketones/chemical synthesis , Catalysis
5.
Int Heart J ; 65(2): 211-217, 2024.
Article En | MEDLINE | ID: mdl-38556332

Duchenne muscular dystrophy (DMD) is an intractable X-linked myopathy caused by dystrophin gene mutations. Patients with DMD suffer from progressive muscle weakness, inevitable cardiomyopathy, increased heart rate (HR), and decreased blood pressure (BP). The aim of this study was to clarify the efficacy and tolerability of ivabradine treatment for DMD cardiomyopathy.A retrospective analysis was performed in 11 patients with DMD, who received ivabradine treatment for more than 1 year. Clinical results were analyzed before (baseline), 6 months after, and 12 months after the ivabradine administration.The initial ivabradine dose was 2.0 ± 1.2 mg/day and the final dose was 5.6 ± 4.0 mg/day. The baseline BP was 95/64 mmHg. A non-significant BP decrease to 90/57 mmHg was observed at 1 month but it recovered to 97/62 mmHg at 12 months after ivabradine administration. The baseline HR was 93 ± 6 bpm and it decreased to 74 ± 12 bpm at 6 months (P = 0.011), and to 77 ± 10 bpm at 12 months (P = 0.008). A linear correlation (y = 2.2x + 5.1) was also observed between the ivabradine dose (x mg/day) and HR decrease (y bpm). The baseline LVEF was 38 ± 12% and it significantly increased to 42 ± 9% at 6 months (P = 0.011) and to 41 ± 11% at 12 months (P = 0.038). Only 1 patient with the lowest BMI of 11.0 kg/m2 and BP of 79/58 mmHg discontinued ivabradine treatment at 6 months, while 1-year administration was well-tolerated in the other 10 patients.Ivabradine decreased HR and increased LVEF without lowering BP, suggesting it can be a treatment option for DMD cardiomyopathy.


Cardiomyopathies , Muscular Dystrophy, Duchenne , Humans , Ivabradine/therapeutic use , Muscular Dystrophy, Duchenne/complications , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Retrospective Studies , Cardiomyopathies/complications , Cardiomyopathies/drug therapy , Dystrophin/genetics
7.
Cell Mol Gastroenterol Hepatol ; 17(5): 745-767, 2024.
Article En | MEDLINE | ID: mdl-38309455

BACKGROUND & AIMS: Colorectal cancer (CRC) is the third most common cancer in the world. Gut microbiota has recently been implicated in the development of CRC. Actinomyces odontolyticus is one of the most abundant bacteria in the gut of patients with very early stages of CRC. A odontolyticus is an anaerobic bacterium existing principally in the oral cavity, similar to Fusobacterium nucleatum, which is known as a colon carcinogenic bacterium. Here we newly determined the biological functions of A odontolyticus on colonic oncogenesis. METHODS: We examined the induction of intracellular signaling by A odontolyticus in human colonic epithelial cells (CECs). DNA damage levels in CECs were confirmed using the human induced pluripotent stem cell-derived gut organoid model and mouse colon tissues in vivo. RESULTS: A odontolyticus secretes membrane vesicles (MVs), which induce nuclear factor kappa B signaling and also produce excessive reactive oxygen species (ROS) in colon epithelial cells. We found that A odontolyticus secretes lipoteichoic acid-rich MVs, promoting inflammatory signaling via TLR2. Simultaneously, those MVs are internalized into the colon epithelial cells, co-localize with the mitochondria, and cause mitochondrial dysfunction, resulting in excessive ROS production and DNA damage. Induction of excessive DNA damage in colonic cells by A odontolyticus-derived MVs was confirmed in the gut organoid model and also in mouse colon tissues. CONCLUSIONS: A odontolyticus secretes MVs, which cause chronic inflammation and ROS production in colonic epithelial cells, leading to the initiation of CRC.


Colon , Induced Pluripotent Stem Cells , Mice , Animals , Humans , Colon/microbiology , Reactive Oxygen Species , Base Composition , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Epithelial Cells , Bacteria/genetics
8.
IEEE Trans Biomed Eng ; PP2024 Feb 13.
Article En | MEDLINE | ID: mdl-38349832

OBJECTIVE: The pair-wise addition of parahydrogen, the singlet form of molecular hydrogen, to unsaturated precursors evokes the hyperpolarization of two parahydrogen-derived 1H nuclear spins through a process known as parahydrogen-induced polarization (PHIP). Subsequent spin order transfer (SOT) from the 1H to the surrounding 13C nuclear spins via magnetic field cycling (MFC) results in substantial signal enhancement in 13C magnetic resonance imaging (MRI). Here, we report the development of a unique PHIP 13C hyperpolarizer system using a flow guide for MFC. METHODS: The optimal MFC scheme for 1H to 13C spin order transfer was quantum-chemically simulated using the J-coupling values of 13C-labeled metabolic tracers. The flow guide system was three-dimensionally designed based on the simulated MFC scheme and pre-measured magnetic field distribution in a zero-field chamber. RESULTS: The system efficiently transfers the spin order of hyperpolarized 1H to a particular 13C spin when the parahydrogenated tracer passes through the flow guide at a designated flow rate. The 13C MRI signal is enhanced more than 40,000 times in 13C-labeled pyruvate and fumarate, compared to the thermal equilibrium level at 1.5 T, was achieved for conducting in vivo metabolic MRI of mice. CONCLUSION: A fully automated PHIP-based 13C polarizer was developed using a unique flow guide to conduct the MFC for 1H to 13C SOT. SIGNIFICANCE: The PHIP hyperpolarizer with a flow guide can conduct efficient 1H-13C SOT without a MFC magnetic field sweep system and offers a cost-effective alternative to conventional dynamic nuclear polarization.

10.
Trop Med Health ; 51(1): 68, 2023 Dec 07.
Article En | MEDLINE | ID: mdl-38062533

BACKGROUND: Chagas disease can lead to life-threatening cardiac manifestations. Regional factors, including genetic characteristics of circulating Trypanosoma cruzi (T. cruzi), have attracted attention as likely determinants of Chagas disease phenotypic expression and Chagas cardiomyopathy (CCM) progression. Our objective was to elucidate the differential transcriptomic signatures of cardiomyocytes resulting from infection with genetically discrete T. cruzi strains and explore their relationships with CCM pathogenesis and progression. METHODS: HL-1 rodent cardiomyocytes were infected with T. cruzi trypomastigotes of the Colombian, Y, or Tulahuen strain. RNA was serially isolated post-infection for microarray analysis. Enrichment analyses of differentially expressed genes (fold-change ≥ 2 or ≤ 0.5) highlighted over-represented biological pathways. Intracellular levels of reactive oxygen species (ROS) were compared between T. cruzi-infected and non-infected HL-1 cardiomyocytes. RESULTS: We found that oxidative stress-related gene ontology terms (GO terms), 'Hypertrophy model', 'Apoptosis', and 'MAPK signaling' pathways (all with P < 0.01) were upregulated. 'Glutathione and one-carbon metabolism' pathway, and 'Cellular nitrogen compound metabolic process' GO term (all with P < 0.001) were upregulated exclusively in the cardiomyocytes infected with the Colombian/Y strains. Mean intracellular levels of ROS were significantly higher in the T. cruzi-infected cardiomyocytes compared to the non-infected (P < 0.0001). CONCLUSIONS: The upregulation of oxidative stress-related and hypertrophic pathways constitutes the universal hallmarks of the cardiomyocyte response elicited by T. cruzi infection. Nitrogen metabolism upregulation and glutathione metabolism imbalance may implicate a relationship between nitrosative stress and poor oxygen radicals scavenging in the unique pathophysiology of Chagas cardiomyopathy.

11.
Nat Commun ; 14(1): 8031, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-38052804

Cancer cells inevitably interact with neighboring host tissue-resident cells during the process of metastatic colonization, establishing a metastatic niche to fuel their survival, growth, and invasion. However, the underlying mechanisms in the metastatic niche are yet to be fully elucidated owing to the lack of methodologies for comprehensively studying the mechanisms of cell-cell interactions in the niche. Here, we improve a split green fluorescent protein (GFP)-based genetically encoded system to develop secretory glycosylphosphatidylinositol-anchored reconstitution-activated proteins to highlight intercellular connections (sGRAPHIC) for efficient fluorescent labeling of tissue-resident cells that neighbor on and putatively interact with cancer cells in deep tissues. The sGRAPHIC system enables the isolation of metastatic niche-associated tissue-resident cells for their characterization using a single-cell RNA sequencing platform. We use this sGRAPHIC-leveraged transcriptomic platform to uncover gene expression patterns in metastatic niche-associated hepatocytes in a murine model of liver metastasis. Among the marker genes of metastatic niche-associated hepatocytes, we identify Lgals3, encoding galectin-3, as a potential pro-metastatic factor that accelerates metastatic growth and invasion.


Liver Neoplasms , Humans , Mice , Animals , Liver Neoplasms/metabolism , Hepatocytes/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Extracellular Matrix/metabolism , Cell Communication
12.
Chem Commun (Camb) ; 60(2): 172-175, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38053438

This study describes an efficient approach to access oxime ethers via P(III)-mediated O-H bond insertion reaction of oximes with α-keto esters. The strategy involves the protonation of in situ generated Kukhtin-Ramirez adducts, followed by SN2-type reaction. Important features include a good functional group tolerance, operational simplicity, and application to gram scale synthesis and the synthesis of an acaricide.

13.
J Mol Cell Cardiol ; 180: 58-68, 2023 07.
Article En | MEDLINE | ID: mdl-37172930

Sepsis is a life-threatening syndrome, and its associated mortality is increased when cardiac dysfunction and damage (septic cardiomyopathy [SCM]) occur. Although inflammation is involved in the pathophysiology of SCM, the mechanism of how inflammation induces SCM in vivo has remained obscure. NLRP3 inflammasome is a critical component of the innate immune system that activates caspase-1 (Casp1) and causes the maturation of IL-1ß and IL-18 as well as the processing of gasdermin D (GSDMD). Here, we investigated the role of the NLRP3 inflammasome in a murine model of lipopolysaccharide (LPS)-induced SCM. LPS injection induced cardiac dysfunction, damage, and lethality, which was significantly prevented in NLRP3-/- mice, compared to wild-type (WT) mice. LPS injection upregulated mRNA levels of inflammatory cytokines (Il6, Tnfa, and Ifng) in the heart, liver, and spleen of WT mice, and this upregulation was prevented in NLRP3-/- mice. LPS injection increased plasma levels of inflammatory cytokines (IL-1ß, IL-18, and TNF-α) in WT mice, and this increase was markedly inhibited in NLRP3-/- mice. LPS-induced SCM was also prevented in Casp1/11-/- mice, but not in Casp11mt, IL-1ß-/-, IL-1α-/-, or GSDMD-/- mice. Notably, LPS-induced SCM was apparently prevented in IL-1ß-/- mice transduced with adeno-associated virus vector expressing IL-18 binding protein (IL-18BP). Furthermore, splenectomy, irradiation, or macrophage depletion alleviated LPS-induced SCM. Our findings demonstrate that the cross-regulation of NLRP3 inflammasome-driven IL-1ß and IL-18 contributes to the pathophysiology of SCM and provide new insights into the mechanism underlying the pathogenesis of SCM.


Cardiomyopathies , Inflammasomes , Interleukin-18 , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Cardiomyopathies/genetics , Caspase 1/genetics , Caspase 1/metabolism , Cytokines , Inflammasomes/metabolism , Inflammation , Interleukin-18/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/adverse effects , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
14.
Cell Death Dis ; 14(5): 320, 2023 05 18.
Article En | MEDLINE | ID: mdl-37198149

Infertility occurs in 15% of couples worldwide. Recurrent implantation failure (RIF) is one of the major problems in in vitro fertilization and embryo transfer (IVF-ET) programs, and how to manage patients with RIF to achieve successful pregnancy outcomes remains unresolved. Here, a uterine polycomb repressive complex 2 (PRC2)-regulated gene network was found to control embryo implantation. Our RNA-seq analyses of the human peri-implantation endometrium obtained from patients with RIF and fertile controls revealed that PRC2 components, including its core enzyme enhancer of zeste homolog 2 (EZH2)-catalyzing H3K27 trimethylation (H3K27me3) and their target genes are dysregulated in the RIF group. Although fertility of uterine epithelium-specific knockout mice of Ezh2 (eKO mice) was normal, Ezh2-deleted mice in the uterine epithelium and stroma (uKO mice) exhibited severe subfertility, suggesting that stromal Ezh2 plays a key role in female fertility. The RNA-seq and ChIP-seq analyses revealed that H3K27me3-related dynamic gene silencing is canceled, and the gene expression of cell-cycle regulators is dysregulated in Ezh2-deleted uteri, causing severe epithelial and stromal differentiation defects and failed embryo invasion. Thus, our findings indicate that the EZH2-PRC2-H3K27me3 axis is critical to preparing the endometrium for the blastocyst invasion into the stroma in mice and humans.


Enhancer of Zeste Homolog 2 Protein , Polycomb Repressive Complex 2 , Pregnancy , Humans , Female , Mice , Animals , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones/metabolism , Cell Cycle , Endometrium/metabolism , Mice, Knockout , Cell Differentiation/genetics , Blastocyst/metabolism
15.
Chem Pharm Bull (Tokyo) ; 71(2): 83-92, 2023.
Article En | MEDLINE | ID: mdl-36724984

Direct oxidation of the C(sp3)-H bond of ß-(alkoxy)imino carbonyl compounds using copper acetate and molecular oxygen has been established. The protocol features a broad substrate scope and generates 1-imino-2,3-dicarbonyls in good to excellent yields.


Alcohols , Copper , Copper/chemistry , Catalysis , Molecular Structure , Alcohols/chemistry
16.
Org Biomol Chem ; 21(7): 1435-1439, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36649121

An efficient approach to access isolable ß-chloroenamines via nucleophilic addition/dehydration of α-chloro N-alkoxylactam with organolithium and Grignard reagents is reported. This approach is amenable to the synthesis of ß-chloroenamines by incorporating various C(sp) and C(sp2) units, such as alkyne, aryl, and heteroaryl moieties. The sequential reaction has a broad substrate scope and can be carried out for a scalable synthesis of ß-chloroenamines. Control experiments suggested that both chloro and alkoxy groups act as inductive electron-withdrawing substituents to improve the stability of the enamines.

17.
J Org Chem ; 88(2): 1093-1106, 2023 Jan 20.
Article En | MEDLINE | ID: mdl-36576873

Spiro[indole-3,3'-pyrrolidine]-2'-ones were synthesized via one-pot chloroformylation-dearomatizing spirocyclization of tryptamine derivatives. Moreover, the "thio" equivalent spiro[indole-3,3'-pyrrolidine]-2'-thiones, for which the synthesis and properties were previously unreported, were synthesized. The procedures are easily implemented, have a broad scope, and are transition-metal-free and cheap. To demonstrate the utility of the synthetic methodology, the spiro[indole-3,3'-pyrrolidine]-2'-ones were converted into heterocyclic scaffolds, such as an optically active spiroindoline and spirooxindole.

18.
EMBO Rep ; 24(1): e54042, 2023 01 09.
Article En | MEDLINE | ID: mdl-36341521

Aberrant activation of the hypoxia-inducible transcription factor HIF-1 and dysfunction of the tumor suppressor p53 have been reported to induce malignant phenotypes and therapy resistance of cancers. However, their mechanistic and functional relationship remains largely unknown. Here, we reveal a mechanism by which p53 deficiency triggers the activation of HIF-1-dependent hypoxia signaling and identify zinc finger and BTB domain-containing protein 2 (ZBTB2) as an important mediator. ZBTB2 forms homodimers via its N-terminus region and increases the transactivation activity of HIF-1 only when functional p53 is absent. The ZBTB2 homodimer facilitates invasion, distant metastasis, and growth of p53-deficient, but not p53-proficient, cancers. The intratumoral expression levels of ZBTB2 are associated with poor prognosis in lung cancer patients. ZBTB2 N-terminus-mimetic polypeptides competitively inhibit ZBTB2 homodimerization and significantly suppress the ZBTB2-HIF-1 axis, leading to antitumor effects. Our data reveal an important link between aberrant activation of hypoxia signaling and loss of a tumor suppressor and provide a rationale for targeting a key mediator, ZBTB2, to suppress cancer aggressiveness.


Neoplasms , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Hypoxia/genetics , Protein Binding , Signal Transduction , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Hypoxia/genetics , Repressor Proteins/genetics
19.
J Cardiol ; 81(2): 202-208, 2023 02.
Article En | MEDLINE | ID: mdl-36127212

Oxygen is essential for living organisms. Molecular oxygen binds to hemoglobin and is delivered to every organ in the body. In several cardiovascular diseases or anemia, local oxygen tension drops below its physiological level and tissue hypoxia develops. In such conditions, the expression of hypoxia-responsive genes increases to alleviate the respective condition. The hypoxia-responsive genes include the genes coding erythropoietin (EPO), vascular endothelial growth factor-A, and glycolytic enzymes. Hypoxia-inducible factor (HIF)-1α, HIF-2α, and HIF-3α are transcription factors that regulate the hypoxia-responsive genes. The HIF-α proteins are continuously degraded by an oxygen-dependent degrading pathway involving HIF-prolyl hydroxylases (HIF-PHs) and von Hippel-Lindau tumor suppressor protein. However, upon hypoxia, this degradation ceases and the HIF-α proteins form heterodimers with HIF-1ß (a constitutive subunit of HIF), which results in the induction of hypoxia responsive genes. HIF-1α and HIF-2α are potential therapeutic targets for renal anemia, where EPO production is impaired due to chronic kidney diseases. Small molecule HIF-PH inhibitors are currently used to activate HIF-α signaling and to increase plasma hemoglobin levels by restoring EPO production. In this review, we will discuss the current understanding of the roles of the HIF-α signaling pathway in cardiovascular diseases. This will include the roles of HIF-1α in cardiomyocytes as well as in stromal cells including macrophages.


Cardiovascular Diseases , Hypoxia-Inducible Factor 1, alpha Subunit , Humans , Anemia/etiology , Hypoxia , Oxygen , Signal Transduction , Vascular Endothelial Growth Factor A , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
20.
Cell Stem Cell ; 29(10): 1459-1474.e9, 2022 Oct 06.
Article En | MEDLINE | ID: mdl-36113462

Fibrosis is the final path of nearly every form of chronic disease, regardless of the pathogenesis. Upon chronic injury, activated, fibrogenic fibroblasts deposit excess extracellular matrix, and severe tissue fibrosis can occur in virtually any organ. However, antifibrotic therapies that target fibrogenic cells, while sparing homeostatic fibroblasts in healthy tissues, are limited. We tested whether specific immunization against endogenous proteins, strongly expressed in fibrogenic cells but highly restricted in quiescent fibroblasts, can elicit an antigen-specific cytotoxic T cell response to ameliorate organ fibrosis. In silico epitope prediction revealed that activation of the genes Adam12 and Gli1 in profibrotic cells and the resulting "self-peptides" can be exploited for T cell vaccines to ablate fibrogenic cells. We demonstrate the efficacy of a vaccination approach to mount CD8+ T cell responses that reduce fibroblasts and fibrosis in the liver and lungs in mice. These results provide proof of principle for vaccination-based immunotherapies to treat fibrosis.


Fibroblasts , Lung , Animals , Epitopes/metabolism , Fibroblasts/metabolism , Fibrosis , Immunotherapy , Liver/pathology , Lung/metabolism , Mice , Vaccination , Zinc Finger Protein GLI1/metabolism
...