Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Nature ; 629(8014): 1165-1173, 2024 May.
Article En | MEDLINE | ID: mdl-38720076

The nucleus is highly organized, such that factors involved in the transcription and processing of distinct classes of RNA are confined within specific nuclear bodies1,2. One example is the nuclear speckle, which is defined by high concentrations of protein and noncoding RNA regulators of pre-mRNA splicing3. What functional role, if any, speckles might play in the process of mRNA splicing is unclear4,5. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs and higher co-transcriptional splicing levels than genes that are located farther from nuclear speckles. Gene organization around nuclear speckles is dynamic between cell types, and changes in speckle proximity lead to differences in splicing efficiency. Finally, directed recruitment of a pre-mRNA to nuclear speckles is sufficient to increase mRNA splicing levels. Together, our results integrate the long-standing observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a crucial role for dynamic three-dimensional spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing.


Genome , Nuclear Speckles , RNA Precursors , RNA Splicing , RNA, Messenger , Spliceosomes , Animals , Humans , Male , Mice , Genes , Genome/genetics , Human Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/metabolism , Nuclear Speckles/genetics , Nuclear Speckles/metabolism , RNA Precursors/metabolism , RNA Precursors/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spliceosomes/metabolism , Transcription, Genetic
2.
Science ; 382(6672): 780, 2023 11 17.
Article En | MEDLINE | ID: mdl-37972182
3.
bioRxiv ; 2023 May 09.
Article En | MEDLINE | ID: mdl-37214923

The mammalian nucleus is compartmentalized by diverse subnuclear structures. These subnuclear structures, marked by nuclear bodies and histone modifications, are often cell-type specific and affect gene regulation and 3D genome organization1-3. Understanding nuclear organization requires identifying the molecular constituents of subnuclear structures and mapping their associations with specific genomic loci in individual cells, within complex tissues. Here, we introduce two-layer DNA seqFISH+, which allows simultaneous mapping of 100,049 genomic loci, together with nascent transcriptome for 17,856 genes and a diverse set of immunofluorescently labeled subnuclear structures all in single cells in cell lines and adult mouse cerebellum. Using these multi-omics datasets, we showed that repressive chromatin compartments are more variable by cell type than active compartments. We also discovered a single exception to this rule: an RNA polymerase II (RNAPII)-enriched compartment was associated with long, cell-type specific genes (> 200kb), in a manner distinct from nuclear speckles. Further, our analysis revealed that cell-type specific facultative and constitutive heterochromatin compartments marked by H3K27me3 and H4K20me3 are enriched at specific genes and gene clusters, respectively, and shape radial chromosomal positioning and inter-chromosomal interactions in neurons and glial cells. Together, our results provide a single-cell high-resolution multi-omics view of subnuclear compartments, associated genomic loci, and their impacts on gene regulation, directly within complex tissues.

4.
bioRxiv ; 2023 Jan 04.
Article En | MEDLINE | ID: mdl-36711853

The nucleus is highly organized such that factors involved in transcription and processing of distinct classes of RNA are organized within specific nuclear bodies. One such nuclear body is the nuclear speckle, which is defined by high concentrations of protein and non-coding RNA regulators of pre-mRNA splicing. What functional role, if any, speckles might play in the process of mRNA splicing remains unknown. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs, and higher co-transcriptional splicing levels relative to genes that are located farther from nuclear speckles. We show that directed recruitment of a pre-mRNA to nuclear speckles is sufficient to drive increased mRNA splicing levels. Finally, we show that gene organization around nuclear speckles is highly dynamic with differential localization between cell types corresponding to differences in Pol II occupancy. Together, our results integrate the longstanding observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a critical role for dynamic 3D spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing.

5.
Science ; 374(6567): 586-594, 2021 Oct 29.
Article En | MEDLINE | ID: mdl-34591592

Diverse cell types in tissues have distinct gene expression programs, chromatin states, and nuclear architectures. To correlate such multimodal information across thousands of single cells in mouse brain tissue sections, we use integrated spatial genomics, imaging thousands of genomic loci along with RNAs and epigenetic markers simultaneously in individual cells. We reveal that cell type­specific association and scaffolding of DNA loci around nuclear bodies organize the nuclear architecture and correlate with differential expression levels in different cell types. At the submegabase level, active and inactive X chromosomes access similar domain structures in single cells despite distinct epigenetic and expression states. This work represents a major step forward in linking single-cell three-dimensional nuclear architecture, gene expression, and epigenetic modifications in a native tissue context.


Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Cerebral Cortex/cytology , Neuroglia/ultrastructure , Neurons/ultrastructure , Single-Cell Analysis , Animals , Cerebral Cortex/metabolism , Chromatin/metabolism , Chromatin/ultrastructure , Chromosomes/metabolism , Chromosomes/ultrastructure , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Epigenesis, Genetic , Female , Genome , In Situ Hybridization, Fluorescence , Mice , Neuroglia/metabolism , Neurons/metabolism , RNA-Seq , Transcription, Genetic , Transcriptome , X Chromosome/metabolism , X Chromosome/ultrastructure
6.
Nature ; 590(7845): 344-350, 2021 02.
Article En | MEDLINE | ID: mdl-33505024

Identifying the relationships between chromosome structures, nuclear bodies, chromatin states and gene expression is an overarching goal of nuclear-organization studies1-4. Because individual cells appear to be highly variable at all these levels5, it is essential to map different modalities in the same cells. Here we report the imaging of 3,660 chromosomal loci in single mouse embryonic stem (ES) cells using DNA seqFISH+, along with 17 chromatin marks and subnuclear structures by sequential immunofluorescence and the expression profile of 70 RNAs. Many loci were invariably associated with immunofluorescence marks in single mouse ES cells. These loci form 'fixed points' in the nuclear organizations of single cells and often appear on the surfaces of nuclear bodies and zones defined by combinatorial chromatin marks. Furthermore, highly expressed genes appear to be pre-positioned to active nuclear zones, independent of bursting dynamics in single cells. Our analysis also uncovered several distinct mouse ES cell subpopulations with characteristic combinatorial chromatin states. Using clonal analysis, we show that the global levels of some chromatin marks, such as H3 trimethylation at lysine 27 (H3K27me3) and macroH2A1 (mH2A1), are heritable over at least 3-4 generations, whereas other marks fluctuate on a faster time scale. This seqFISH+-based spatial multimodal approach can be used to explore nuclear organization and cell states in diverse biological systems.


Cell Compartmentation/genetics , Cell Nucleus/genetics , Genomics/methods , Mouse Embryonic Stem Cells/cytology , Single-Cell Analysis/methods , Transcriptome/genetics , Animals , Cell Line , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Mammalian/genetics , Clone Cells/cytology , Fluorescent Antibody Technique , Genetic Markers , Histones/metabolism , Lysine/metabolism , Male , Mice , Time Factors
7.
Nature ; 568(7751): 235-239, 2019 04.
Article En | MEDLINE | ID: mdl-30911168

Imaging the transcriptome in situ with high accuracy has been a major challenge in single-cell biology, which is particularly hindered by the limits of optical resolution and the density of transcripts in single cells1-5. Here we demonstrate an evolution of sequential fluorescence in situ hybridization (seqFISH+). We show that seqFISH+ can image mRNAs for 10,000 genes in single cells-with high accuracy and sub-diffraction-limit resolution-in the cortex, subventricular zone and olfactory bulb of mouse brain, using a standard confocal microscope. The transcriptome-level profiling of seqFISH+ allows unbiased identification of cell classes and their spatial organization in tissues. In addition, seqFISH+ reveals subcellular mRNA localization patterns in cells and ligand-receptor pairs across neighbouring cells. This technology demonstrates the ability to generate spatial cell atlases and to perform discovery-driven studies of biological processes in situ.


Brain/anatomy & histology , Brain/metabolism , In Situ Hybridization, Fluorescence/methods , RNA, Messenger/analysis , RNA, Messenger/genetics , Single-Cell Analysis/methods , Transcriptome/genetics , 3T3 Cells , Animals , Brain/cytology , Dopaminergic Neurons/metabolism , Endothelial Cells/metabolism , Female , Gene Expression Profiling , Ligands , Male , Mice , Microglia/metabolism , Organ Specificity
8.
Cell Res ; 28(12): 1141-1157, 2018 12.
Article En | MEDLINE | ID: mdl-30315278

Human adult spermatogenesis balances spermatogonial stem cell (SSC) self-renewal and differentiation, alongside complex germ cell-niche interactions, to ensure long-term fertility and faithful genome propagation. Here, we performed single-cell RNA sequencing of ~6500 testicular cells from young adults. We found five niche/somatic cell types (Leydig, myoid, Sertoli, endothelial, macrophage), and observed germline-niche interactions and key human-mouse differences. Spermatogenesis, including meiosis, was reconstructed computationally, revealing sequential coding, non-coding, and repeat-element transcriptional signatures. Interestingly, we identified five discrete transcriptional/developmental spermatogonial states, including a novel early SSC state, termed State 0. Epigenetic features and nascent transcription analyses suggested developmental plasticity within spermatogonial States. To understand the origin of State 0, we profiled testicular cells from infants, and identified distinct similarities between adult State 0 and infant SSCs. Overall, our datasets describe key transcriptional and epigenetic signatures of the normal adult human testis, and provide new insights into germ cell developmental transitions and plasticity.


Spermatogenesis/genetics , Spermatogonia/metabolism , Testis/cytology , Testis/metabolism , Adolescent , Adult , Animals , Atlases as Topic , Base Sequence , Cell Cycle/genetics , Cell Plasticity/genetics , Humans , Infant , Male , Mice , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Spermatogonia/cytology , Spermatogonia/growth & development , Transcriptome
9.
Cell ; 174(3): 744-757.e24, 2018 07 26.
Article En | MEDLINE | ID: mdl-29887377

Eukaryotic genomes are packaged into a 3-dimensional structure in the nucleus. Current methods for studying genome-wide structure are based on proximity ligation. However, this approach can fail to detect known structures, such as interactions with nuclear bodies, because these DNA regions can be too far apart to directly ligate. Accordingly, our overall understanding of genome organization remains incomplete. Here, we develop split-pool recognition of interactions by tag extension (SPRITE), a method that enables genome-wide detection of higher-order interactions within the nucleus. Using SPRITE, we recapitulate known structures identified by proximity ligation and identify additional interactions occurring across larger distances, including two hubs of inter-chromosomal interactions that are arranged around the nucleolus and nuclear speckles. We show that a substantial fraction of the genome exhibits preferential organization relative to these nuclear bodies. Our results generate a global model whereby nuclear bodies act as inter-chromosomal hubs that shape the overall packaging of DNA in the nucleus.


Cell Nucleus/ultrastructure , Chromosome Mapping/methods , Chromosomes/physiology , Cell Nucleolus , Cell Nucleus/physiology , Chromosomes/genetics , DNA/physiology , Eukaryota , Genome/genetics , Genome/physiology , Humans , Structure-Activity Relationship
10.
Cell ; 174(2): 363-376.e16, 2018 07 12.
Article En | MEDLINE | ID: mdl-29887381

Visualization of the transcriptome and the nuclear organization in situ has been challenging for single-cell analysis. Here, we demonstrate a multiplexed single-molecule in situ method, intron seqFISH, that allows imaging of 10,421 genes at their nascent transcription active sites in single cells, followed by mRNA and lncRNA seqFISH and immunofluorescence. This nascent transcriptome-profiling method can identify different cell types and states with mouse embryonic stem cells and fibroblasts. The nascent sites of RNA synthesis tend to be localized on the surfaces of chromosome territories, and their organization in individual cells is highly variable. Surprisingly, the global nascent transcription oscillated asynchronously in individual cells with a period of 2 hr in mouse embryonic stem cells, as well as in fibroblasts. Together, spatial genomics of the nascent transcriptome by intron seqFISH reveals nuclear organizational principles and fast dynamics in single cells that are otherwise obscured.


In Situ Hybridization, Fluorescence/methods , Transcriptome , Animals , Catalytic Domain , Cell Line , Chromosomes/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Introns , Mice , Microscopy, Fluorescence , Microscopy, Video , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Single-Cell Analysis
11.
Biophys J ; 112(9): 1773-1776, 2017 May 09.
Article En | MEDLINE | ID: mdl-28427715

Visualization of chromosome dynamics allows the investigation of spatiotemporal chromatin organization and its role in gene regulation and other cellular processes. However, current approaches to label multiple genomic loci in live cells have a fundamental limitation in the number of loci that can be labeled and uniquely identified. Here we describe an approach we call "track first and identify later" for multiplexed visualization of chromosome dynamics by combining two techniques: CRISPR imaging and DNA sequential fluorescence in situ hybridization. Our approach first labels and tracks chromosomal loci in live cells with the CRISPR-Cas9 system, then barcodes those loci by DNA sequential fluorescence in situ hybridization in fixed cells and resolves their identities. We demonstrate our approach by tracking telomere dynamics, identifying 12 unique subtelomeric regions with variable detection efficiencies, and tracking back the telomere dynamics of respective chromosomes in mouse embryonic stem cells.


Chromosomes/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Loci , In Situ Hybridization, Fluorescence , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Associated Protein 9 , Embryonic Stem Cells/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Streptococcus pyogenes
12.
J Biol Chem ; 287(49): 41118-25, 2012 Nov 30.
Article En | MEDLINE | ID: mdl-23048033

The chaperonin, GroEL, is an essential molecular chaperone that mediates protein folding together with its cofactor, GroES, in Escherichia coli. It is widely believed that the two rings of GroEL alternate between the folding active state coupled to GroES binding during the reaction cycle. In other words, an asymmetric GroEL-GroES complex (the bullet-shaped complex) is formed throughout the cycle, whereas a symmetric GroEL-(GroES)(2) complex (the football-shaped complex) is not formed. We have recently shown that the football-shaped complex coexists with the bullet-shaped complex during the reaction cycle. However, how protein folding proceeds in the football-shaped complex remains poorly understood. Here, we used GFP as a substrate to visualize protein folding in the football-shaped complex by single-molecule fluorescence techniques. We directly showed that GFP folding occurs in both rings of the football-shaped complex. Remarkably, the folding was a sequential two-step reaction, and the kinetics were in excellent agreement with those in the bullet-shaped complex. These results demonstrate that the same reactions take place independently in both rings of the football-shaped complex to facilitate protein folding.


Chaperonin 60/metabolism , Escherichia coli/metabolism , Adenosine Triphosphatases/chemistry , Biophysics/methods , Chaperonins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Green Fluorescent Proteins/chemistry , Kinetics , Microscopy, Fluorescence/methods , Models, Statistical , Protein Binding , Protein Folding
...