Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Glycoconj J ; 40(2): 225-246, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36708410

RESUMEN

CD22, one of the sialic acid-binding immunoglobulin-like lectins (Siglecs), regulates B lymphocyte signaling via its interaction with glycan ligands bearing the sequence Neu5Ac/Gcα(2→6)Gal. We have developed the synthetic sialoside GSC-718 as a ligand mimic for CD22 and identified it as a potent CD22 inhibitor. Although the synthesis of CD22-binding sialosides including GSC-718 has been reported by our group, the synthetic route was unfortunately not suitable for large-scale synthesis. In this study, we developed an improved scalable synthetic procedure for sialosides which utilized 1,5-lactam formation as a key step. The improved procedure yielded sialosides incorporating a series of aglycones at the C2 position. Several derivatives with substituted benzyl residues as aglycones were found to bind to mouse CD22 with affinity comparable to that of GSC-718. The new procedure developed in this study affords sialosides in sufficient quantities for cell-based assays, and will facilitate the search for promising CD22 inhibitors that have therapeutic potential.


Asunto(s)
Linfocitos B , Transducción de Señal , Animales , Ratones , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Linfocitos B/metabolismo , Ligandos
2.
FASEB J ; 37(1): e22680, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36468710

RESUMEN

Spermatid production is a complex regulatory process in which coordination between hormonal control and apoptosis plays a pivotal role in maintaining a balanced number of sperm cells. Apoptosis in spermatogenesis is controlled by pro-apoptotic and anti-apoptotic molecules. Hormones involved in the apoptotic process during spermatogenesis include gonadotrophins, sex hormones, and glucocorticoid (GC). GC acts broadly as an apoptosis inducer by binding to its receptor (glucocorticoid receptor: GR) during organ development processes, such as spermatogenesis. However, the downstream pathway induced in GC-GR signaling and the apoptotic process during spermatogenesis remains poorly understood. We reported previously that GC induces full-length glucocorticoid-induced transcript 1 (GLCCI1-long), which functions as an anti-apoptotic mediator in thymic T cell development. Here, we demonstrate that mature murine testis expresses a novel isoform of GLCCI1 protein (GLCCI1-short) in addition to GLCCI1-long. We demonstrate that GLCCI1-long is expressed in spermatocytes along with GR. In contrast, GLCCI1-short is primarily expressed in spermatids where GR is absent; instead, the estrogen receptor is expressed. GLCCI1-short also binds to LC8, which is a known mediator of the anti-apoptotic effect of GLCCI1-long. A luciferase reporter assay revealed that ß-estradiol treatment synergistically increased Glcci1-short promotor-driven luciferase activity in Erα-overexpressing cells. Together with the evidence that the conversion of testosterone to estrogen is preceded by aromatase expression in spermatids, we hypothesize that estrogen induces GLCCI1-short, which, in turn, may function as a novel anti-apoptotic mediator in mature murine testis.


Asunto(s)
Glucocorticoides , Semen , Masculino , Ratones , Animales , Espermatogénesis , Espermátides , Estrógenos
3.
J Am Soc Nephrol ; 33(11): 2008-2025, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35985815

RESUMEN

BACKGROUND: The cause of podocyte injury in idiopathic nephrotic syndrome (INS) remains unknown. Although recent evidence points to the role of B cells and autoimmunity, the lack of animal models mediated by autoimmunity limits further research. We aimed to establish a mouse model mimicking human INS by immunizing mice with Crb2, a transmembrane protein expressed at the podocyte foot process. METHODS: C3H/HeN mice were immunized with the recombinant extracellular domain of mouse Crb2. Serum anti-Crb2 antibody, urine protein-to-creatinine ratio, and kidney histology were studied. For signaling studies, a Crb2-expressing mouse podocyte line was incubated with anti-Crb2 antibody. RESULTS: Serum anti-Crb2 autoantibodies and significant proteinuria were detected 4 weeks after the first immunization. The proteinuria reached nephrotic range at 9-13 weeks and persisted up to 29 weeks. Initial kidney histology resembled minimal change disease in humans, and immunofluorescence staining showed delicate punctate IgG staining in the glomerulus, which colocalized with Crb2 at the podocyte foot process. A subset of mice developed features resembling FSGS after 18 weeks. In glomeruli of immunized mice and in Crb2-expressing podocytes incubated with anti-Crb2 antibody, phosphorylation of ezrin, which connects Crb2 to the cytoskeleton, increased, accompanied by altered Crb2 localization and actin distribution. CONCLUSION: The results highlight the causative role of anti-Crb2 autoantibody in podocyte injury in mice. Crb2 immunization could be a useful model to study the immunologic pathogenesis of human INS, and may support the role of autoimmunity against podocyte proteins in INS.


Asunto(s)
Nefrosis Lipoidea , Síndrome Nefrótico , Podocitos , Ratones , Humanos , Animales , Podocitos/metabolismo , Síndrome Nefrótico/metabolismo , Nefrosis Lipoidea/patología , Ratones Endogámicos C3H , Proteinuria/metabolismo , Modelos Animales de Enfermedad , Inmunización , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo
4.
Biochem Biophys Res Commun ; 614: 198-206, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35605301

RESUMEN

Podocyte damage is a major pathological lesion leading to focal segmental glomerulosclerosis (FSGS). Podocytes damaged by cellular stress undergo hypertrophy to compensate for podocytopenia. It is known that cyclin-dependent kinase inhibitors induced by p53 ensure podocytes hypertrophy; however, its precise mechanism remains to be further investigated. In this study, we found that ubiquitin specific protease 40 (USP40) is a novel regulator of p53. Although USP40 knockout mice established in the present study revealed no abnormal kidney phenotype, intermediate filament Nestin was upregulated in the glomeruli, and was bound to and colocalized with USP40. We also found that USP40 deubiquitinated histidine triad nucleotide-binding protein 1 (HINT1), an inducer of p53. Gene knockdown experiments of USP40 in cultured podocytes revealed the reduction of HINT1 and p53 protein expression. Finally, in glomerular podocytes of mouse FSGS, upregulation of HINT1 occurred in advance of the proteinuria, which was followed by upregulation of USP40, p53 and Nestin. In conclusion, USP40 bound to Nestin deubiquitinates HINT1, and in consequence upregulates p53. These results provide additional insight into the pathological mechanism of podocyte hypertrophy in FSGS.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Proteínas del Tejido Nervioso , Nestina , Podocitos , Proteína p53 Supresora de Tumor , Proteasas Ubiquitina-Específicas , Animales , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Hipertrofia , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina/genética , Nestina/metabolismo , Podocitos/metabolismo , Podocitos/patología , Podocitos/fisiología , Proteína Quinasa C/antagonistas & inhibidores , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación , Regulación hacia Arriba
5.
Sci Signal ; 15(723): eabf9570, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35230871

RESUMEN

The protein tyrosine phosphatase CD45 plays a crucial role in B cell antigen receptor (BCR) signaling by activating Src family kinases. Cd45-/- mice show altered B cell development and a phenotype likely due to reduced steady-state signaling; however, Cd45-/- B cells show relatively normal BCR ligation-induced signaling. In our investigation of how BCR signaling was restored in Cd45-/- cells, we found that the coreceptor CD22 switched from an inhibitory to a stimulatory function in these cells. We disrupted the ability of CD22 to interact with its ligands in Cd45-/- B cells by generating Cd45-/-St6galI-/- mice, which cannot synthesize the glycan ligand of CD22, or by treating Cd45-/- B cells in vitro with the sialoside GSC718, which inhibits ligand binding to CD22. BCR ligation-induced signaling was reduced by ST6GalI deficiency, but not by GSC718 treatment, suggesting that CD22 restored BCR ligation-induced signaling in Cd45-/- mature B cells by altering cellular phenotypes during development. CD22 was required for the increase in the surface amount of IgM-BCR on Cd45-/- B cells, which augmented signaling. Because B cell survival depends on steady-state BCR signaling, IgM-BCR abundance was likely increased by the selective survival of IgM-BCRhi Cd45-/- B cells because of CD22-mediated signaling under conditions of substantially reduced steady-state signaling. Because the amount of surface IgM-BCR is increased on B cells from patients with other BCR signaling deficiencies, including X-linked agammaglobulinemia, our findings suggest that CD22 may contribute to the partial restoration of B cell function in these patients.


Asunto(s)
Linfocitos B , Receptores de Antígenos de Linfocitos B , Animales , Linfocitos B/metabolismo , Antígenos Comunes de Leucocito , Activación de Linfocitos , Ratones , Receptores de Antígenos de Linfocitos B/metabolismo , Lectina 2 Similar a Ig de Unión al Ácido Siálico/genética , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo
6.
Cell Rep ; 38(11): 110512, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35294874

RESUMEN

Germinal centers (GCs) are essential for antibody affinity maturation. GC B cells have a unique repertoire of cell surface glycans compared with naive B cells, yet functional roles for changes in glycosylation in the GC have yet to be ascribed. Detection of GCs by the antibody GL7 reflects a downregulation in ligands for CD22, an inhibitory co-receptor of the B cell receptor. To test a functional role for downregulation of CD22 ligands in the GC, we generate a mouse model that maintains CD22 ligands on GC B cells. With this model, we demonstrate that glycan remodeling plays a critical role in the maintenance of B cells in the GC. Sustained expression of CD22 ligands induces higher levels of apoptosis in GC B cells, reduces memory B cell and plasma cell output, and delays affinity maturation of antibodies. These defects are CD22 dependent, demonstrating that downregulation of CD22 ligands on B cells plays a critical function in the GC.


Asunto(s)
Centro Germinal , Receptores de Antígenos de Linfocitos B , Animales , Linfocitos B , Glicosilación , Ligandos , Ratones , Polisacáridos/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo
7.
Viruses ; 13(5)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062844

RESUMEN

The first step in influenza virus infection is the binding of hemagglutinin to sialic acid-containing glycans present on the cell surface. Over 50 different sialic acid modifications are known, of which N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the two main species. Animal models with α2,6 linked Neu5Ac in the upper respiratory tract, similar to humans, are preferred to enable and mimic infection with unadapted human influenza A viruses. Animal models that are currently most often used to study human influenza are mice and ferrets. Additionally, guinea pigs, cotton rats, Syrian hamsters, tree shrews, domestic swine, and non-human primates (macaques and marmosets) are discussed. The presence of NeuGc and the distribution of sialic acid linkages in the most commonly used models is summarized and experimentally determined. We also evaluated the role of Neu5Gc in infection using Neu5Gc binding viruses and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH)-/- knockout mice, which lack Neu5Gc and concluded that Neu5Gc is unlikely to be a decoy receptor. This article provides a base for choosing an appropriate animal model. Although mice are one of the most favored models, they are hardly naturally susceptible to infection with human influenza viruses, possibly because they express mainly α2,3 linked sialic acids with both Neu5Ac and Neu5Gc modifications. We suggest using ferrets, which resemble humans closely in the sialic acid content, both in the linkages and the lack of Neu5Gc, lung organization, susceptibility, and disease pathogenesis.


Asunto(s)
Virus de la Influenza A/fisiología , Gripe Humana/metabolismo , Gripe Humana/virología , Ácidos Neuramínicos/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Animales , Línea Celular , Modelos Animales de Enfermedad , Hurones , Interacciones Huésped-Patógeno , Humanos , Ratones , Estructura Molecular , Ácidos Neuramínicos/química , Receptores Virales/metabolismo , Ácidos Siálicos/metabolismo , Evaluación de Síntomas , Acoplamiento Viral
8.
J Immunol ; 206(11): 2544-2551, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33990399

RESUMEN

CD22 is an inhibitory B cell coreceptor that regulates B cell development and activation by downregulating BCR signaling through activation of SH2-containing protein tyrosine phosphatase-1 (SHP-1). CD22 recognizes α2,6 sialic acid as a specific ligand and interacts with α2,6 sialic acid-containing membrane molecules, such as CD45, IgM, and CD22, expressed on the same cell. Functional regulation of CD22 by these endogenous ligands enhances BCR ligation-induced signaling and is essential for normal B cell responses to Ags. In this study, we demonstrate that CD45 plays a crucial role in CD22-mediated inhibition of BCR ligation-induced signaling. However, disruption of ligand binding of CD22 enhances CD22 phosphorylation, a process required for CD22-mediated signal inhibition, upon BCR ligation in CD45-/- as well as wild-type mouse B cells but not in mouse B cells expressing a loss-of-function mutant of SHP-1. This result indicates that SHP-1 but not CD45 is required for ligand-mediated regulation of CD22. We further demonstrate that CD22 is a substrate of SHP-1, suggesting that SHP-1 recruited to CD22 dephosphorylates nearby CD22 as well as other substrates. CD22 dephosphorylation by SHP-1 appears to be augmented by homotypic CD22 clustering mediated by recognition of CD22 as a ligand of CD22 because CD22 clustering increases the number of nearby CD22. Our results suggest that CD22 but not CD45 is an endogenous ligand of CD22 that enhances BCR ligation-induced signaling through SHP-1-mediated dephosphorylation of CD22 in CD22 clusters.


Asunto(s)
Linfocitos B/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Animales , Línea Celular , Humanos , Antígenos Comunes de Leucocito/inmunología , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
9.
F1000Res ; 10: 542, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35528957

RESUMEN

Background: Andrographolide (Andro) is a diterpenoid component of the plant Andrographis paniculata that is known for its anti-tumor activity against a variety of cancer cells.   Methods: We studied the effects of Andro on the viability of the human leukemia monocytic cell line THP-1 and the human multiple myeloma cell line H929. Andro was compared with cytosine arabinoside (Ara-C) and vincristine (VCR), which are well-established therapeutics against hematopoietic tumors. The importance of reactive oxygen species (ROS) production for the toxicity of each agent was investigated by using an inhibitor of ROS production, N-acetyl-L-cysteine (NAC).    Results:  Andro reduced the viability of THP-1 and H929 in a concentration-dependent manner. H929 viability was highly susceptible to Andro, although only slightly susceptible to Ara-C. The agents Andro, Ara-C, and VCR each induced apoptosis, as shown by cellular shrinkage, DNA fragmentation, and increases in annexin V-binding, caspase-3/7 activity, ROS production, and mitochondrial membrane depolarization. Whereas Ara-C and VCR increased the percentages of cells in the G0/G1 and G2/M phases, respectively, Andro showed little or no detectable effect on cell cycle progression. The apoptotic activities of Andro were largely suppressed by NAC, an inhibitor of ROS production, whereas NAC hardly affected the apoptotic activities of Ara-C and VCR.  Conclusions: Andro induces ROS-dependent apoptosis in monocytic leukemia THP-1 and multiple myeloma H929 cells, underlining its potential as a therapeutic agent for treating hematopoietic tumors. The high toxicity for H929 cells, by a mechanism that is different from that of Ara-C and VCR, is encouraging for further studies on the use of Andro against multiple myeloma.


Asunto(s)
Diterpenos , Neoplasias Hematológicas , Leucemia , Mieloma Múltiple , Andrographis paniculata , Apoptosis , Línea Celular Tumoral , Citarabina/farmacología , Diterpenos/farmacología , Humanos , Mieloma Múltiple/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo
10.
J Autoimmun ; 116: 102571, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33223341

RESUMEN

Guillain-Barré syndrome (GBS), including its variant Miller Fisher syndrome (MFS), is an acute peripheral neuropathy that involves autoimmune mechanisms leading to the production of autoantibodies to gangliosides; sialic acid-containing glycosphingolipids. Although association with various genetic polymorphisms in the major histocompatibility complex (MHC) is shown in other autoimmune diseases, GBS is an exception, showing no such link. No significant association was found by genome wide association studies, suggesting that GBS is not associated with common variants. To address the involvement of rare variants in GBS, we analyzed Siglec-10, a sialic acid-recognizing inhibitory receptor expressed on B cells. Here we demonstrate that two rare variants encoding R47Q and A108V substitutions in the ligand-binding domain are significantly accumulated in patients with GBS. Because of strong linkage disequilibrium, there was no patient carrying only one of them. Recombinant Siglec-10 protein containing R47Q but not A108V shows impaired binding to gangliosides. Homology modeling revealed that the R47Q substitution causes marked alteration in the ligand-binding site. Thus, GBS is associated with a rare variant of the SIGLEC10 gene that impairs ligand binding of Siglec-10. Because Siglec-10 regulates antibody production to sialylated antigens, our finding suggests that Siglec-10 regulates development of GBS by suppressing antibody production to gangliosides, with defects in its function predisposing to disease.


Asunto(s)
Gangliósidos/inmunología , Predisposición Genética a la Enfermedad , Síndrome de Guillain-Barré/inmunología , Lectinas/inmunología , Mutación Missense/inmunología , Polimorfismo de Nucleótido Simple/inmunología , Receptores de Superficie Celular/inmunología , Alelos , Secuencia de Aminoácidos , Autoanticuerpos/inmunología , Sitios de Unión/genética , Femenino , Gangliósidos/metabolismo , Frecuencia de los Genes , Genotipo , Síndrome de Guillain-Barré/genética , Síndrome de Guillain-Barré/metabolismo , Humanos , Lectinas/genética , Lectinas/metabolismo , Masculino , Persona de Mediana Edad , Síndrome de Miller Fisher/genética , Síndrome de Miller Fisher/inmunología , Síndrome de Miller Fisher/metabolismo , Mutación Missense/genética , Polimorfismo de Nucleótido Simple/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Homología de Secuencia de Aminoácido
11.
Int J Mol Sci ; 21(14)2020 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-32707739

RESUMEN

The AMPA-type glutamate receptor (AMPAR) is a homotetrameric or heterotetrameric ion channel composed of various combinations of four subunits (GluA1-4), and its abundance in the synapse determines the strength of synaptic activity. The formation of oligomers in the endoplasmatic reticulum (ER) is crucial for AMPAR subunits' ER-exit and translocation to the cell membrane. Although N-glycosylation on different AMPAR subunits has been shown to regulate the ER-exit of hetero-oligomers, its role in the ER-exit of homo-oligomers remains unclear. In this study, we investigated the role of N-glycans at GluA1N63/N363 and GluA2N370 in ER-exit under the homo-oligomeric expression conditions, whose mutants are known to show low cell surface expressions. In contrast to the N-glycosylation site mutant GluA1N63Q, the cell surface expression levels of GluA1N363Q and GluA2N370Q increased in a time-dependent manner. Unlike wild-type (WT) GluA1, GluA2WT rescued surface GluA2N370Q expression. Additionally, the expression of GluA1N63Q reduced the cell surface expression level of GluA1WT. In conclusion, our findings suggest that these N-glycans have distinct roles in the ER-exit of GluA1 and GluA2 homo-oligomers; N-glycan at GluA1N63 is a prerequisite for GluA1 ER-exit, whereas N-glycans at GluA1N363 and GluA2N370 control the ER-exit rate.


Asunto(s)
Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Sustitución de Aminoácidos , Sitios de Unión/genética , Membrana Celular/metabolismo , Expresión Génica , Glicosilación , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Estructura Cuaternaria de Proteína , Receptores de Glutamato/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
12.
Nat Commun ; 10(1): 5245, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748519

RESUMEN

The number and subunit compositions of AMPA receptors (AMPARs), hetero- or homotetramers composed of four subunits GluA1-4, in the synapse is carefully tuned to sustain basic synaptic activity. This enables stimulation-induced synaptic plasticity, which is central to learning and memory. The AMPAR tetramers have been widely believed to be stable from their formation in the endoplasmic reticulum until their proteolytic decomposition. However, by observing GluA1 and GluA2 at the level of single molecules, we find that the homo- and heterotetramers are metastable, instantaneously falling apart into monomers, dimers, or trimers (in 100 and 200 ms, respectively), which readily form tetramers again. In the dendritic plasma membrane, GluA1 and GluA2 monomers and dimers are far more mobile than tetramers and enter and exit from the synaptic regions. We conclude that AMPAR turnover by lateral diffusion, essential for sustaining synaptic function, is largely done by monomers of AMPAR subunits, rather than preformed tetramers.


Asunto(s)
Plasticidad Neuronal , Neuronas/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Animales , Células CHO , Membrana Celular/metabolismo , Cricetulus , Dendritas/metabolismo , Difusión , Células HEK293 , Humanos , Ratones , Microscopía Fluorescente , Técnicas de Placa-Clamp , Imagen Individual de Molécula
13.
FASEB J ; 33(6): 7387-7402, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30860871

RESUMEN

Glucocorticoids (GCs) potently induce T-cell apoptosis in a GC receptor (GR)-dependent manner and are used to control lymphocyte function in clinical practice. However, its downstream pathways remain controversial. Here, we showed that GC-induced transcript 1 (GLCCI1) is a novel downstream molecule of the GC-GR cascade that acts as an antiapoptotic mediator in thymic T cells. GLCCI1 was highly phosphorylated and colocalized with microtubules in GLCCI1-transfected human embryonic kidney QBI293A cells. GR-dependent up-regulation of GLCCI1 was associated with GC-induced proapoptotic events in a cultured thymocyte cell line. However, GLCCI1 knockdown in a thymocyte cell line led to apoptosis. Consistently, transgenic mice overexpressing human GLCCI1 displayed enlarged thymi that consisted of larger numbers of thymocytes. Further molecular characterization showed that GLCCI1 bound to both dynein light chain LC8-type 1 (LC8) and its functional kinase, p21-protein activated kinase 1 (PAK1), thereby inhibiting the kinase activity of PAK1 toward LC8 phosphorylation, a crucial event in apoptotic signaling. GLCCI1 induction facilitated LC8 dimer formation and reduced Bim expression. Thus, GLCCI1 is a candidate factor involved in apoptosis regulation of thymic T cells.-Kiuchi, Z., Nishibori, Y., Kutsuna, S., Kotani, M., Hada, I., Kimura, T., Fukutomi, T., Fukuhara, D., Ito-Nitta, N., Kudo, A., Takata, T., Ishigaki, Y., Tomosugi, N., Tanaka, H., Matsushima, S., Ogasawara, S., Hirayama, Y., Takematsu, H., Yan, K. GLCCI1 is a novel protector against glucocorticoid-induced apoptosis in T cells.


Asunto(s)
Apoptosis/fisiología , Glucocorticoides/fisiología , Receptores de Glucocorticoides/fisiología , Linfocitos T/citología , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Proteína 11 Similar a Bcl2/biosíntesis , Proteína 11 Similar a Bcl2/genética , Línea Celular , Dineínas Citoplasmáticas/metabolismo , Dimerización , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Glucocorticoides/farmacología , Humanos , Hipertrofia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microtúbulos/metabolismo , Fosforilación , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Receptores de Glucocorticoides/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal/fisiología , Timo/patología , Quinasas p21 Activadas/metabolismo
14.
PLoS One ; 14(1): e0210193, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30629639

RESUMEN

The human natural killer-1 (HNK-1) carbohydrate epitope, composed of a unique sulfated trisaccharide (HSO3-3GlcAß1-3Galß1-4GlcNAc-R), is highly expressed during brain development and regulates higher brain function. However, it remains unclear which glycoprotein carries the HNK-1 epitope in the embryonic brain and the functional role it plays. Here, we showed that one of the major HNK-1 carrier proteins in the embryonic brain is tenascin-C (TNC), an extracellular matrix protein that regulates neurite outgrowth by interacting with the GPI-anchored protein contactin-1 (CNTN). Because the alternatively spliced fibronectin type-III (FNIII) repeats in TNC give rise to many isoforms and affect neuronal function, we evaluated neurite outgrowth of primary hippocampal neurons on purified recombinant FNIII repeats with or without the HNK-1 epitope as a substrate. We found that the presence of the HNK-1 epitope on the C domain of TNC promoted neurite outgrowth, and that this signal was mediated by CNTN, which is an HNK-1-expressing neuronal receptor. The neurite-promoting activity of the HNK-1 epitope on TNC required neuronal HNK-1 expression, which was defective in neurons lacking the glucuronyltransferases GlcAT-P and GlcAT-S. These results suggest that the HNK-1 epitope is a key modifier of TNC and CNTN in the regulation of embryonic brain development.


Asunto(s)
Antígenos CD57/inmunología , Contactina 1/fisiología , Hipocampo/crecimiento & desarrollo , Proyección Neuronal/inmunología , Tenascina/inmunología , Empalme Alternativo/inmunología , Animales , Embrión de Mamíferos , Epítopos/inmunología , Dominio de Fibronectina del Tipo III/genética , Dominio de Fibronectina del Tipo III/inmunología , Glucuronosiltransferasa/genética , Células HEK293 , Hipocampo/citología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuritas/fisiología , Proyección Neuronal/genética , Cultivo Primario de Células , Tenascina/genética
15.
Front Immunol ; 9: 820, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29725338

RESUMEN

Sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed in various immune cells and most of them carry signaling functions. High-affinity synthetic sialoside ligands have been developed for various Siglecs. Therapeutic potentials of the nanoparticles and compounds that contain multiple numbers of these sialosides and other reagents such as toxins and antigens have been demonstrated. However, whether immune responses can be regulated by monomeric sialoside ligands has not yet been known. CD22 (also known as Siglec-2) is an inhibitory molecule preferentially expressed in B lymphocytes (B cells) and is constitutively bound and functionally regulated by α2,6 sialic acids expressed on the same cell (cis-ligands). Here, we developed synthetic sialosides GSC718 and GSC839 that bind to CD22 with high affinity (IC50 ~100 nM), and inhibit ligand binding of CD22. When B cells are activated by B cell antigen receptor (BCR) ligation, both GSC718 and GSC839 downregulate proliferation of B cells, and this regulation requires both CD22 and α2,6 sialic acids. This result suggests that these sialosides regulate BCR ligation-induced B cell activation by reversing endogenous ligand-mediated regulation of CD22. By contrast, GSC718 and GSC839 augment B cell proliferation induced by TLR ligands or CD40 ligation, and this augmentation requires CD22 but not α2,6 sialic acids. Thus, these sialosides appear to enhance B cell activation by directly suppressing the inhibitory function of CD22 independently of endogenous ligand-mediated regulation. Moreover, GSC839 augments B cell proliferation that depends on both BCR ligation and CD40 ligation as is the case for in vivo B cell responses to antigens, and enhanced antibody production to the extent comparable to CpG oligonuleotides or a small amount of alum. Although these known adjuvants induce production of the inflammatory cytokines or accumulation of inflammatory cells, CD22-binding sialosides do not. Thus, synthetic sialosides that bind to CD22 with high-affinity modulate B cell activation through endogenous ligand-dependent and independent pathways, and carry an adjuvant activity without inducing inflammation.


Asunto(s)
Formación de Anticuerpos , Linfocitos B/inmunología , Proliferación Celular/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Ácidos Siálicos/metabolismo , Adyuvantes Inmunológicos , Animales , Linfocitos B/efectos de los fármacos , Ligandos , Ratones , Ratones Endogámicos C57BL , Polisacáridos/inmunología , Unión Proteica , Receptores de Antígenos de Linfocitos B/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Transducción de Señal
16.
Sci Rep ; 8(1): 1244, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352143

RESUMEN

Cellular translation should be precisely controlled in response to extracellular cues. However, knowledge is limited concerning signal transduction-regulated translation. In the present study, phosphorylation was identified in the 40S small subunit ribosomal protein uS7 (Yjr123w/previously called as Rps5) by Ypk1 and Pkc1, AGC family protein kinases in yeast Saccharomyces cerevisiae. Serine residue 223 (Ser223) of uS7 in the conserved C-terminal region was crucial for this phosphorylation event. S223A mutant uS7 caused severe reduction of small ribosomal subunit production, likely due to compromised interaction with Rio2, resulting in both reduced translation and reduced cellular proliferation. Contrary to optimal culture conditions, heat stressed S223A mutant cells exhibited increased heat resistance and induced heat shock proteins. Taken together, an intracellular signal transduction pathway involving Ypk1/Pkc1 seemed to play an important role in ribosome biogenesis and subsequent cellular translation, utilizing uS7 as a substrate.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo , Respuesta al Choque Térmico , Mutación , Fosforilación , Dominios Proteicos , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
17.
Biochem Biophys Res Commun ; 495(1): 854-859, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29146181

RESUMEN

Lectins expressed on the cell surface are often bound and regulated by the membrane molecules containing the glycan ligands on the same cell (cis-ligands). However, molecular nature and function of cis-ligands are generally poorly understood partly because of weak interaction between lectins and glycan ligands. Cis-ligands are most extensively studied in CD22 (also known as Siglec-2), an inhibitory B lymphocyte receptor specifically recognizing α2,6 sialic acids. CD22, CD45 and IgM are suggested to be ligands of CD22. Here we labeled molecules in the proximity of CD22 in situ on B cell surface using biotin-tyramide. Molecules including CD22, CD45 and IgM were labeled in wild-type but not ST6GalI-/- B cells that lack α2,6 sialic acids, indicating that these molecules associate with CD22 by lectin-glycan interaction, and are therefore cis-ligands. In ST6GalI-/- B cells, these cis-ligands are located in a slightly more distance from CD22. Thus, the lectin-glycan interaction recruits cis-ligands already located in the relative proximity of CD22 through non-lectin-glycan interaction to the close proximity. Moreover, cis-ligands are labeled in Cmah-/- B cells that lack Neu5Gc preferred by mouse CD22 as efficiently as in wild-type B cells, indicating that very low affinity lectin-glycan interaction is sufficient for recruiting cis-ligands, and can be detected by proximity labeling. Thus, proximity labeling with tyramide appears to be a useful method to identify cis-ligands and to analyze their interaction with the lectins.


Asunto(s)
Linfocitos B/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Mapeo de Interacción de Proteínas/métodos , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Animales , Células Cultivadas , Lectinas/metabolismo , Ratones , Unión Proteica , Coloración y Etiquetado/métodos
18.
FEBS Lett ; 591(22): 3721-3729, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29029364

RESUMEN

Glucose uptake is crucial for providing both an energy source and a signal that regulates cell proliferation. Therefore, it is important to clarify the mechanisms underlying glucose uptake and its transmission to intracellular signaling pathways. In this study, we searched for a novel regulatory factor involved in glucose-induced signaling by using Saccharomyces cerevisiae as a eukaryotic model. Requirement of the extracellular protein Ecm33 in efficient glucose uptake and full activation of the nutrient-responsive TOR kinase complex 1 (TORC1) signaling pathway is shown. Cells lacking Ecm33 elicit a series of starvation-induced pathways even in the presence of extracellular high glucose concentration. This results in delayed cell proliferation, reduced ATP, induction of autophagy, and dephosphorylation of the TORC1 substrates Atg13 and Sch9.


Asunto(s)
Glucosa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfato/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia/metabolismo , Proliferación Celular , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal
19.
Biochim Biophys Acta Gen Subj ; 1861(10): 2455-2461, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28709864

RESUMEN

BACKGROUND: The human natural killer-1 (HNK-1) carbohydrate, a unique trisaccharide possessing sulfated glucuronic acid in a non-reducing terminus (HSO3-3GlcAß1-3Galß1-4GlcNAc-), is highly expressed in the nervous system and its spatiotemporal expression is strictly regulated. Mice deficient in the gene encoding a key enzyme, GlcAT-P, of the HNK-1 biosynthetic pathway exhibit almost complete disappearance of the HNK-1 epitope in the brain, significant reduction of long-term potentiation, and aberration of spatial learning and memory formation. In addition to its physiological roles in higher brain function, the HNK-1 carbohydrate has attracted considerable attention as an autoantigen associated with peripheral demyelinative neuropathy, which relates to IgM paraproteinemia, because of high immunogenicity. It has been suggested, however, that serum autoantibodies in IgM anti-myelin-associated glycoprotein (MAG) antibody-associated neuropathy patients show heterogeneous reactivity to the HNK-1 epitope. SCOPE OF REVIEW: We have found that structurally distinct HNK-1 epitopes are expressed in specific proteins in the nervous system. Here, we overview the current knowledge of the involvement of these HNK-1 epitopes in the regulation of neural plasticity and discuss the impact of different HNK-1 antigens of anti-MAG neuropathy patients. MAJOR CONCLUSIONS: We identified the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit GluA2 and aggrecan as HNK-1 carrier proteins. The HNK-1 epitope on GluA2 and aggrecan regulates neural plasticity in different ways. Furthermore, we found the clinical relationship between reactivity of autoantibodies to the different HNK-1 epitopes and progression of anti-MAG neuropathy. GENERAL SIGNIFICANCE: The HNK-1 epitope is indispensable for the acquisition of normal neuronal function and can be a good target for the establishment of diagnostic criteria for anti-MAG neuropathy.


Asunto(s)
Antígenos CD57/química , Epítopos/química , Glicoproteína Asociada a Mielina/inmunología , Plasticidad Neuronal , Paraproteinemias/inmunología , Enfermedades del Sistema Nervioso Periférico/inmunología , Agrecanos/metabolismo , Animales , Autoanticuerpos/biosíntesis , Antígenos CD57/genética , Antígenos CD57/inmunología , Epítopos/genética , Epítopos/inmunología , Glucuronosiltransferasa/deficiencia , Glucuronosiltransferasa/genética , Humanos , Inmunoglobulina M/biosíntesis , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Ratones , Ratones Noqueados , Glicoproteína Asociada a Mielina/genética , Paraproteinemias/genética , Paraproteinemias/patología , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Receptores AMPA/genética , Receptores AMPA/inmunología
20.
Am J Physiol Renal Physiol ; 312(4): F702-F715, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28148530

RESUMEN

Unbiased transcriptome profiling and functional genomics approaches have identified ubiquitin-specific protease 40 (USP40) as a highly specific glomerular transcript. This gene product remains uncharacterized, and its biological function is completely unknown. Here, we showed that mouse and rat glomeruli exhibit specific expression of the USP40 protein, which migrated at 150 kDa and was exclusively localized in the podocyte cytoplasm of the adult kidney. Double-labeling immunofluorescence staining and confocal microscopy analysis of fetal and neonate kidney samples revealed that USP40 was also expressed in the vasculature, including in glomerular endothelial cells at the premature stage. USP40 in cultured glomerular endothelial cells and podocytes was specifically localized to the intermediate filament protein nestin. In glomerular endothelial cells, immunoprecipitation confirmed actual protein-protein binding of USP40 with nestin, and USP40-small-interfering RNA transfection revealed significant reduction of nestin. In a rat model of minimal-change nephrotic syndrome, USP40 expression was apparently reduced, which was also associated with the reduction of nestin. Zebrafish morphants lacking Usp40 exhibited disorganized glomeruli with the reduction of the cell junction in the endothelium and foot process effacement in the podocytes. Permeability studies in these zebrafish morphants demonstrated a disruption of the selective glomerular permeability filter. These data indicate that USP40/Usp40 is a novel protein that might play a crucial role in glomerulogenesis and the glomerular integrity after birth through the modulation of intermediate filament protein homeostasis.


Asunto(s)
Tasa de Filtración Glomerular , Glomérulos Renales/enzimología , Ubiquitina Tiolesterasa/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Endoteliales/enzimología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genotipo , Células HEK293 , Humanos , Glomérulos Renales/embriología , Glomérulos Renales/patología , Glomérulos Renales/fisiopatología , Ratones , Nefrosis Lipoidea/enzimología , Nefrosis Lipoidea/genética , Nefrosis Lipoidea/fisiopatología , Nestina/metabolismo , Permeabilidad , Fenotipo , Podocitos/enzimología , Interferencia de ARN , Ratas , Transfección , Ubiquitina Tiolesterasa/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...