Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 85
1.
Cancer Sci ; 115(2): 401-411, 2024 Feb.
Article En | MEDLINE | ID: mdl-38041233

Desmoid tumors (DTs), also called desmoid-type fibromatoses, are locally aggressive tumors of mesenchymal origin. In the present study, we developed a novel mouse model of DTs by inducing a local mutation in the Ctnnb1 gene, encoding ß-catenin in PDGFRA-positive stromal cells, by subcutaneous injection of 4-hydroxy-tamoxifen. Tumors in this model resembled histologically clinical samples from DT patients and showed strong phosphorylation of nuclear SMAD2. Knockout of SMAD4 in the model significantly suppressed tumor growth. Proteomic analysis revealed that SMAD4 knockout reduced the level of Cysteine-and-Glycine-Rich Protein 2 (CSRP2) in DTs, and treatment of DT-derived cells with a TGF-ß receptor inhibitor reduced CSRP2 RNA levels. Knockdown of CSRP2 in DT cells significantly suppressed their proliferation. These results indicate that the TGF-ß/CSRP2 axis is a potential therapeutic target for DTs downstream of TGF-ß signaling.


Fibromatosis, Aggressive , Animals , Humans , Mice , beta Catenin/genetics , beta Catenin/metabolism , Fibromatosis, Aggressive/genetics , Fibromatosis, Aggressive/pathology , LIM Domain Proteins/genetics , Mice, Knockout , Muscle Proteins/metabolism , Nuclear Proteins/genetics , Proteomics , Transforming Growth Factor beta/metabolism , Up-Regulation
2.
J Invest Dermatol ; 144(6): 1223-1237.e10, 2024 Jun.
Article En | MEDLINE | ID: mdl-38159590

The Wnt/ß-catenin pathway plays a critical role in cell fate specification, morphogenesis, and stem cell activation across diverse tissues, including the skin. In mammals, the embryonic surface epithelium gives rise to the epidermis as well as the associated appendages including hair follicles and mammary glands, both of which depend on epithelial Wnt/ß-catenin activity for initiation of their development. Later on, Wnts are thought to enhance mammary gland growth and branching, whereas in hair follicles, they are essential for hair shaft formation. In this study, we report a strong downregulation of epithelial Wnt/ß-catenin activity as the mammary bud progresses to branching. We show that forced activation of epithelial ß-catenin severely compromises embryonic mammary gland branching. However, the phenotype of conditional Lef1-deficient embryos implies that a low level of Wnt/ß-catenin activity is necessary for mammary cell survival. Transcriptomic profiling suggests that sustained high ß-catenin activity leads to maintenance of mammary bud gene signature at the expense of outgrowth/branching gene signature. In addition, it leads to upregulation of epidermal differentiation genes. Strikingly, we find a partial switch to hair follicle fate early on upon stabilization of ß-catenin, suggesting that the level of epithelial Wnt/ß-catenin signaling activity may contribute to the choice between skin appendage identities.


Cell Differentiation , Mammary Glands, Animal , Morphogenesis , Wnt Signaling Pathway , beta Catenin , Animals , beta Catenin/metabolism , beta Catenin/genetics , Mice , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/embryology , Mammary Glands, Animal/growth & development , Female , Wnt Signaling Pathway/physiology , Hair Follicle/embryology , Hair Follicle/metabolism , Hair Follicle/cytology , Hair Follicle/growth & development , Lymphoid Enhancer-Binding Factor 1/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental
3.
Nat Commun ; 14(1): 6246, 2023 10 06.
Article En | MEDLINE | ID: mdl-37803016

Cancer cachexia is a complex metabolic disorder accounting for ~20% of cancer-related deaths, yet its metabolic landscape remains unexplored. Here, we report a decrease in B vitamin-related liver enzymes as a hallmark of systemic metabolic changes occurring in cancer cachexia. Metabolomics of multiple mouse models highlights cachexia-associated reductions of niacin, vitamin B6, and a glycine-related subset of one-carbon (C1) metabolites in the liver. Integration of proteomics and metabolomics reveals that liver enzymes related to niacin, vitamin B6, and glycine-related C1 enzymes dependent on B vitamins decrease linearly with their associated metabolites, likely reflecting stoichiometric cofactor-enzyme interactions. The decrease of B vitamin-related enzymes is also found to depend on protein abundance and cofactor subtype. These metabolic/proteomic changes and decreased protein malonylation, another cachexia feature identified by protein post-translational modification analysis, are reflected in blood samples from mouse models and gastric cancer patients with cachexia, underscoring the clinical relevance of our findings.


Niacin , Stomach Neoplasms , Vitamin B Complex , Mice , Animals , Humans , Cachexia/etiology , Cachexia/metabolism , Proteomics , Pyridoxine , Vitamin B 6 , Liver/metabolism , Glycine/metabolism
4.
Cancer Sci ; 114(8): 3259-3269, 2023 Aug.
Article En | MEDLINE | ID: mdl-37208931

Experimental techniques for patient-derived cancer stem-cell organoids/spheroids can be powerful diagnostic tools for personalized chemotherapy. However, establishing their cultures from gastric cancer remains challenging due to low culture efficiency and cumbersome methods. To propagate gastric cancer cells as highly proliferative stem-cell spheroids in vitro, we initially used a similar method to that for colorectal cancer stem cells, which, unfortunately, resulted in a low success rate (25%, 18 of 71 cases). We scrutinized the protocol and found that the unsuccessful cases were largely caused by the paucity of cancer stem cells in the sampled tissues as well as insufficient culture media. To overcome these obstacles, we extensively revised our sample collection protocol and culture conditions. We then investigated the following second cohort and, consequently, achieved a significantly higher success rate (88%, 29 of 33 cases). One of the key improvements included new sampling procedures for tumor tissues from wider and deeper areas of gastric cancer specimens, which allowed securing cancer stem cells more reproducibly. Additionally, we embedded tumor epithelial pieces separately in both Matrigel and collagen type-I as their preference to the extracellular matrix was different depending on the tumors. We also added a low concentration of Wnt ligands to the culture, which helped the growth of occasional Wnt-responsive gastric cancer stem-cell spheroids without allowing proliferation of the normal gastric epithelial stem cells. This newly improved spheroid culture method may facilitate further studies, including personalized drug-sensitivity tests prior to drug therapy.


Spheroids, Cellular , Stomach Neoplasms , Humans , Spheroids, Cellular/pathology , Stomach Neoplasms/pathology , Neoplastic Stem Cells/pathology
5.
Development ; 150(6)2023 03 15.
Article En | MEDLINE | ID: mdl-36960826

The murine kidney and ureter develop in a regionalized fashion from the ureteric bud and its surrounding mesenchyme. Whereas the factors that establish the metanephric cell lineages have been well characterized, much less is known about the molecular cues that specify the ureter. Here, we have identified a crucial patterning function in this process for Tbx18, a T-box transcription factor gene specifically expressed in the mesenchymal primordium of the ureter. Using misexpression and loss-of-function mice combined with molecular profiling approaches, we show that Tbx18 is required and sufficient to repress metanephric mesenchymal gene programs. We identify Wt1 as a functional target of TBX18. Our work suggests that TBX18 acts as a permissive factor in ureter specification by generating a mesenchymal domain around the distal ureteric bud where SHH and BMP4 signaling can occur.


Ureter , Mice , Animals , Ureter/metabolism , Kidney/metabolism , Signal Transduction/genetics , Cell Lineage/genetics , Gene Expression , Mesoderm/metabolism , Gene Expression Regulation, Developmental , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
6.
Mol Cancer Ther ; 22(4): 529-538, 2023 04 03.
Article En | MEDLINE | ID: mdl-36780229

Recent advances in combinatorial chemistry led to the discovery of inhibitors targeting the KRAS G12C-mutant protein. However, efficacy of its monotherapy on colorectal cancer is limited. Thus, effective combination drugs should be explored for applicable patients with colorectal cancer to fully benefit from the KRAS G12C inhibitor treatment. Here we used a patient-derived colorectal cancer stem cell (PD-CRC-SC) spheroid culture and showed that three-drug combination of inhibitors against KRAS G12C, EGFR, and FGFR synergistically suppressed the growth of colorectal cancer cells carrying the KRAS G12C mutation. Likewise, a combination of KRAS G12C and SHP2 inhibitors was also effective. Importantly, activation of the PI3K/AKT pathway in heregulin-responsive colorectal cancer cells canceled out the effect of KRAS G12C inhibition, which was largely overcome by PI3K inhibitors. These results reveal that evaluating efficacy of combination therapies with PD-CRC-SC spheroids can be a promising strategy to find the best regimen for patients with colorectal cancer.


Colorectal Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism
7.
Int J Mol Sci ; 23(19)2022 Sep 24.
Article En | MEDLINE | ID: mdl-36232573

The circadian clock system exists in most organs and regulates diverse physiological processes, including growth. Here, we used a prostate-specific Bmal1-knockout mouse model (pBmal1 KO: PbsnCre+; Bmal1fx/fx) and immortalized human prostate cells (RWPE-1 and WPMY-1) to elucidate the role of the peripheral prostate clock on prostate growth. Bmal1 KO resulted in significantly decreased ventral and dorsolateral lobes with less Ki-67-positive epithelial cells than the controls. Next, the cap analysis of gene expression revealed that genes associated with cell cycles were differentially expressed in the pBmal1 KO prostate. Cdkn1a (coding p21) was diurnally expressed in the control mouse prostate, a rhythm which was disturbed in pBmal1 KO. Meanwhile, the knockdown of BMAL1 in epithelial RWPE-1 and stromal WPMY-1 cell lines decreased proliferation. Furthermore, RWPE-1 BMAL1 knockdown increased G0/G1-phase cell numbers but reduced S-phase numbers. These findings indicate that core clock gene Bmal1 is involved in prostate growth via the modulation of the cell cycle and provide a rationale for further research to link the pathogenesis of benign prostatic hyperplasia or cancer with the circadian clock.


ARNTL Transcription Factors , Circadian Clocks , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , CLOCK Proteins/genetics , Circadian Rhythm/physiology , Humans , Ki-67 Antigen , Male , Mice , Mice, Knockout , Prostate/metabolism
8.
Cells ; 11(20)2022 10 18.
Article En | MEDLINE | ID: mdl-36291140

Reprogramming of energy metabolism is regarded as one of the hallmarks of cancer; in particular, oncogenic RAS has been shown to be a critical regulator of cancer metabolism. Recently, asparagine metabolism has been heavily investigated as a novel target for cancer treatment. For example, Knott et al. showed that asparagine bioavailability governs metastasis in a breast cancer model. Gwinn et al. reported the therapeutic vulnerability of asparagine biosynthesis in KRAS-driven non-small cell lung cancer. We previously reported that KRAS-mutated CRC cells can adapt to glutamine depletion through upregulation of asparagine synthetase (ASNS), an enzyme that synthesizes asparagine from aspartate. In our previous study, we assessed the efficacy of asparagine depletion using human cancer cell lines. In the present study, we evaluated the clinical relevance of asparagine depletion using a novel patient-derived spheroid xenograft (PDSX) mouse model. First, we examined ASNS expression in 38 spheroid lines and found that 12 lines (12/37, 32.4%) displayed high ASNS expression, whereas 26 lines (25/37, 67.6%) showed no ASNS expression. Next, to determine the role of asparagine metabolism in tumor growth, we established ASNS-knockdown spheroid lines using lentiviral short hairpin RNA constructs targeting ASNS. An in vitro cell proliferation assay demonstrated a significant decrease in cell proliferation upon asparagine depletion in the ASNS-knockdown spheroid lines, and this was not observed in the control spheroids lines. In addition, we examined asparagine inhibition with the anti-leukemia drug L-asparaginase (L-Asp) and observed a considerable reduction in cell proliferation at a low concentration (0.1 U/mL) in the ASNS-knockdown spheroid lines, whereas it exhibited limited inhibition of control spheroid lines at the same concentration. Finally, we used the PDSX model to assess the effects of asparagine depletion on tumor growth in vivo. The nude mice injected with ASNS-knockdown or control spheroid lines were administered with L-Asp once a day for 28 days. Surprisingly, in mice injected with ASNS-knockdown spheroids, the administration of L-Asp dramatically inhibited tumor engraftment. On the other hands, in mice injected with control spheroids, the administration of L-Asp had no effect on tumor growth inhibition at all. These results suggest that ASNS inhibition could be critical in targeting asparagine metabolism in cancers.


Aspartate-Ammonia Ligase , Carcinogenesis , Animals , Humans , Mice , Asparaginase/pharmacology , Asparaginase/metabolism , Asparagine/metabolism , Aspartate-Ammonia Ligase/genetics , Aspartate-Ammonia Ligase/metabolism , Aspartic Acid , Carcinoma, Non-Small-Cell Lung , Cell Line, Tumor , Glutamine , Lung Neoplasms , Mice, Nude , Proto-Oncogene Proteins p21(ras)/metabolism , RNA, Small Interfering , Carcinogenesis/genetics , Xenograft Model Antitumor Assays , Spheroids, Cellular
10.
Cancer Sci ; 113(11): 4005-4010, 2022 Nov.
Article En | MEDLINE | ID: mdl-35950366

Fibroblast growth factor receptor inhibitors (FGFRi) were introduced into clinical trials on several cancer types and found to be particularly efficacious on urothelial cancer and cholangiocarcinoma. Although many enrolled patients responded well in clinical trials, there were some patients who did not respond to FGFRi even though their tumors carried the genomic changes that met the enrollment criteria. As already established, fibroblast growth factor receptor (FGFR) and epidermal growth factor receptor (EGFR) share the downstream signaling pathway of MAPK activation. Accordingly, it is conceivable that targeted inhibition of FGFR alone could leave the MAPK signaling unaffected when the signaling through EGFR is relatively strong. To test this hypothesis, we calculated here the FGFR to EGFR mRNA ratio (F/E for short) of biliary tract and urothelial cancer cell lines utilized in preclinical studies. In six biliary tract cancer cell lines, two responsive lines had an F/E of 9.5 and 9.0, whereas the F/E of four nonresponsive lines was 0.1-1.8. In 22 urothelial cancer cell lines, four of the five responsive lines showed an F/E of 2.8-4.9 (median, 3.6), whereas the F/E range of 17 nonresponsive lines was 0.01-2.7 (median, 0.6) (p = 0.004). We further investigated our 47 patient-derived colorectal cancer-stem cell spheroid lines. The 18 responsive lines showed relatively high F/E (median, 16.4), whereas 29 nonresponsive lines had low F/E (median, 9.2) (p = 0.0006). These results suggest that F/E is another strong predictor of responses to FGFRi that is as useful as the current genomic criteria based solely on the FGFR genomic changes.


Neoplasms , Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Receptors, Fibroblast Growth Factor/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Signal Transduction , Receptor, Fibroblast Growth Factor, Type 2/genetics
11.
Cancer Res ; 82(9): 1803-1817, 2022 05 03.
Article En | MEDLINE | ID: mdl-35247892

Biliary cancer has long been known to carry a poor prognosis, yet the molecular pathogenesis of carcinoma of the extrahepatic biliary system and its precursor lesions remains elusive. Here we investigated the role of Kras and canonical Wnt pathways in the tumorigenesis of the extrahepatic bile duct (EHBD) and gall bladder (GB). In mice, concurrent activation of Kras and Wnt pathways induced biliary neoplasms that resembled human intracholecystic papillary-tubular neoplasm (ICPN) and biliary intraepithelial neoplasia (BilIN), putative precursors to invasive biliary cancer. At a low frequency, these lesions progressed to adenocarcinoma in a xenograft model, establishing them as precancerous lesions. Global gene expression analysis revealed increased expression of genes associated with c-Myc and TGFß pathways in mutant biliary spheroids. Silencing or pharmacologic inhibition of c-Myc suppressed proliferation of mutant biliary spheroids, whereas silencing of Smad4/Tgfbr2 or pharmacologic inhibition of TGFß signaling increased proliferation of mutant biliary spheroids and cancer formation in vivo. Human ICPNs displayed activated Kras and Wnt signals and c-Myc and TGFß pathways. Thus, these data provide direct evidence that concurrent activation of the Kras and canonical Wnt pathways results in formation of ICPN and BilIN, which could develop into biliary cancer. SIGNIFICANCE: This work shows how dysregulation of canonical cell growth pathways drives precursors to biliary cancers and identifies several molecular vulnerabilities as potential therapeutic targets in these precursors to prevent oncogenic progression.


Bile Duct Neoplasms , Biliary Tract Neoplasms , Carcinoma in Situ , Precancerous Conditions , Animals , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Pigments/metabolism , Biliary Tract Neoplasms/genetics , Carcinoma in Situ/pathology , Humans , Mice , Precancerous Conditions/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway/genetics
12.
J Hepatol ; 77(2): 424-435, 2022 08.
Article En | MEDLINE | ID: mdl-35257829

BACKGROUND & AIMS: One-third of hepatocellular carcinomas (HCCs) harbor mutations activating the ß-catenin pathway, predominantly via mutations in the CTNNB1 gene itself. Mouse models of Apc loss-of-function are widely used to mimic ß-catenin-dependent tumorigenesis. Given the low prevalence of APC mutations in human HCCs, we aimed to generate liver tumors through CTNNB1 exon 3 deletion (ßcatΔex3). We then compared ßcatΔex3 liver tumors with liver tumors generated via frameshift in exon 15 of Apc (Apcfs-ex15). METHODS: We used hepatocyte-specific and inducible mouse models generated through either a Cre-Lox or a CRISPR/Cas9 approach using adeno-associated virus vectors. Tumors generated by the Cre-Lox models were phenotypically analyzed using immunohistochemistry and were selected for transcriptomic analysis by RNA-sequencing (RNAseq). Mouse RNAseq data were compared to human RNAseq data (8 normal tissues, 48 HCCs, 9 hepatoblastomas) in an integrative analysis. Tumors generated via CRISPR were analyzed using DNA sequencing and immuno-histochemistry. RESULTS: Mice with CTNNB1 exon 3 deletion in hepatocytes developed liver tumors indistinguishable from Apcfs-ex15 liver tumors. Both Apcfs-ex15 and ßcatΔex3 mouse models induced growth of phenotypically distinct tumors (differentiated or undifferentiated). Integrative analysis of human and mouse tumors showed that differentiated mouse tumors cluster with well-differentiated human CTNNB1-mutated tumors. Conversely, undifferentiated mouse tumors cluster with human mesenchymal hepatoblastomas and harbor activated YAP signaling. CONCLUSION: Apcfs-ex15 and ßcatΔex3 mouse models both induce growth of tumors that are transcriptionally similar to either well-differentiated and ß-catenin-activated human HCCs or mesenchymal hepatoblastomas. LAY SUMMARY: New and easy-to-use transgenic mouse models of primary liver cancers have been generated, with mutations in the gene encoding beta-catenin, which are frequent in both adult and pediatric primary liver cancers. The mice develop both types of cancer, constituting a strong preclinical model.


Carcinoma, Hepatocellular , Hepatoblastoma , Liver Neoplasms , beta Catenin , Animals , Carcinoma, Hepatocellular/pathology , Hepatoblastoma/metabolism , Hepatocytes/metabolism , Humans , Liver Neoplasms/pathology , Mice , Mice, Transgenic , Mutation , beta Catenin/genetics
13.
Nat Commun ; 12(1): 6963, 2021 11 29.
Article En | MEDLINE | ID: mdl-34845225

Within the bone marrow microenvironment, endothelial cells (EC) exert important functions. Arterial EC support hematopoiesis while H-type capillaries induce bone formation. Here, we show that BM sinusoidal EC (BM-SEC) actively control erythropoiesis. Mice with stabilized ß-catenin in BM-SEC (Ctnnb1OE-SEC) generated by using a BM-SEC-restricted Cre mouse line (Stab2-iCreF3) develop fatal anemia. While activation of Wnt-signaling in BM-SEC causes an increase in erythroblast subsets (PII-PIV), mature erythroid cells (PV) are reduced indicating impairment of terminal erythroid differentiation/reticulocyte maturation. Transplantation of Ctnnb1OE-SEC hematopoietic stem cells into wildtype recipients confirms lethal anemia to be caused by cell-extrinsic, endothelial-mediated effects. Ctnnb1OE-SEC BM-SEC reveal aberrant sinusoidal differentiation with altered EC gene expression and perisinusoidal ECM deposition and angiocrine dysregulation with de novo endothelial expression of FGF23 and DKK2, elevated in anemia and involved in vascular stabilization, respectively. Our study demonstrates that BM-SEC play an important role in the bone marrow microenvironment in health and disease.


Anemia/genetics , Bone Marrow/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Endothelium, Vascular/metabolism , Erythroblasts/metabolism , Erythropoiesis/genetics , beta Catenin/genetics , Anemia/metabolism , Anemia/mortality , Anemia/pathology , Animals , Bone Marrow/blood supply , Capillaries/cytology , Capillaries/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Cell Differentiation , Endothelial Cells/classification , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Erythroblasts/classification , Erythroblasts/cytology , Female , Fibroblast Growth Factor-23/genetics , Fibroblast Growth Factor-23/metabolism , Gene Expression Regulation , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Integrases/genetics , Integrases/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Transgenic , Osteogenesis , Reticulocytes/cytology , Reticulocytes/metabolism , Survival Analysis , Wnt Signaling Pathway , beta Catenin/metabolism
14.
Front Physiol ; 12: 722394, 2021.
Article En | MEDLINE | ID: mdl-34658910

Endothelial wingless-related integration site (Wnt)-/ß-catenin signaling is a key regulator of the tightly sealed blood-brain barrier. In the hepatic vascular niche angiokine-mediated Wnt signaling was recently identified as an important regulator of hepatocyte function, including the determination of final adult liver size, liver regeneration, and metabolic liver zonation. Within the hepatic vasculature, the liver sinusoidal endothelial cells (LSECs) are morphologically unique and functionally specialized microvascular endothelial cells (ECs). Pathological changes of LSECs are involved in chronic liver diseases, hepatocarcinogenesis, and liver metastasis. To comprehensively analyze the effects of endothelial Wnt-/ß-catenin signaling in the liver, we used endothelial subtype-specific Clec4g-iCre mice to generate hepatic ECs with overexpression of Ctnnb1. In the resultant Clec4g-iCre tg/wt ;Ctnnb1(Ex3) fl/wt (Ctnnb1 OE-EC ) mice, activation of endothelial Wnt-/ß-catenin signaling resulted in sinusoidal transdifferentiation with disturbed endothelial zonation, that is, loss of midzonal LSEC marker lymphatic vessel endothelial hyaluronic acid receptor 1 (Lyve1) and enrichment of continuous EC genes, such as cluster of differentiation (CD)34 and Apln. Notably, gene set enrichment analysis revealed overrepresentation of brain endothelial transcripts. Activation of endothelial Wnt-/ß-catenin signaling did not induce liver fibrosis or alter metabolic liver zonation, but Ctnnb1 OE-EC mice exhibited significantly increased plasma triglyceride concentrations, while liver lipid content was slightly reduced. Ctnnb1 overexpression in arterial ECs of the heart has been reported previously to cause cardiomyopathy. As Clec4g-iCre is active in a subset of cardiac ECs, it was not unexpected that Ctnnb1 OE-EC mice showed reduced overall survival and cardiac dysfunction. Altogether, balanced endothelial Wnt-/ß-catenin signaling in the liver is required for normal LSEC differentiation and for maintenance of normal plasma triglyceride levels.

15.
Front Neurosci ; 15: 628983, 2021.
Article En | MEDLINE | ID: mdl-33716653

Modulating endogenous regenerative processes may represent a suitable treatment for central nervous system (CNS) injuries, such as stroke or trauma. Neural stem/progenitor cells (NS/PCs), which naturally reside in the subventricular zone (SVZ) of the adult brain, proliferate and differentiate to other cell types, and therefore may compensate the negative consequences of ischemic injury. The fate of NS/PCs in the developing brain is largely influenced by Wingless/Integrated (Wnt) signaling; however, its role in the differentiation of adult NS/PCs under ischemic conditions is still enigmatic. In our previous study, we identified the Wnt/ß-catenin signaling pathway as a factor promoting neurogenesis at the expense of gliogenesis in neonatal mice. In this study, we used adult transgenic mice in order to assess the impact of the canonical Wnt pathway modulation (inhibition or hyper-activation) on NS/PCs derived from the SVZ, and combined it with the middle cerebral artery occlusion (MCAO) to disclose the effect of focal cerebral ischemia (FCI). Based on the electrophysiological properties of cultured cells, we first identified three cell types that represented in vitro differentiated NS/PCs - astrocytes, neuron-like cells, and precursor cells. Following FCI, we detected fewer neuron-like cells after Wnt signaling inhibition. Furthermore, the immunohistochemical analysis revealed an overall higher expression of cell-type-specific proteins after FCI, indicating increased proliferation and differentiation rates of NS/PCs in the SVZ. Remarkably, Wnt signaling hyper-activation increased the abundance of proliferating and neuron-like cells, while Wnt pathway inhibition had the opposite effect. Finally, the expression profiling at the single cell level revealed an increased proportion of neural stem cells and neuroblasts after FCI. These observations indicate that Wnt signaling enhances NS/PCs-based regeneration in the adult mouse brain following FCI, and supports neuronal differentiation in the SVZ.

16.
Oncogene ; 40(2): 408-420, 2021 01.
Article En | MEDLINE | ID: mdl-33177648

Although the Wnt/ß-catenin pathway plays a central role in the carcinogenesis and maintenance of colorectal cancer (CRC), attempts to target the pathway itself have not been very successful. MyD88, an adaptor protein of the TLR/IL-1ß signaling, has been implicated in the integrity of the intestines as well as in their tumorigenesis. In this study, we aimed to clarify the mechanisms by which epithelial MyD88 contributes to intestinal tumor formation and to address whether MyD88 can be a therapeutic target of CRC. Conditional knockout of MyD88 in intestinal epithelial cells (IECs) reduced tumor formation in Apc+/Δ716 mice, accompanied by decreased proliferation and enhanced apoptosis of tumor epithelial cells. Mechanistically, the MyD88 loss caused inactivation of the JNK-mTORC1, NF-κB, and Wnt/ß-catenin pathways in tumor cells. Induction of MyD88 knockout in the intestinal tumor-derived organoids, but not in the normal IEC-derived organoids, induced apoptosis and reduced their growth. Treatment with the MyD88 inhibitor ST2825 also suppressed the growth of the intestinal tumor-derived organoids. Knockdown of MYD88 in human CRC cell lines with mutations in APC or CTNNB1 induced apoptosis and reduced their proliferation as well. These results indicate that MyD88 loss is synthetic lethal with mutational activation of the Wnt/ß-catenin signaling in intestinal tumor epithelial cells. Inhibition of MyD88 signaling can thus be a novel therapeutic strategy for familial adenomatous polyposis (FAP) as well as for colorectal cancer harboring mutations in the Wnt/ß-catenin signaling.


Intestinal Mucosa/pathology , Intestinal Neoplasms/pathology , Myeloid Differentiation Factor 88/physiology , Synthetic Lethal Mutations , Wnt Proteins/genetics , beta Catenin/genetics , Animals , Apoptosis , Cell Proliferation , Cells, Cultured , Female , Intestinal Mucosa/metabolism , Intestinal Neoplasms/genetics , Intestinal Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout
17.
EMBO J ; 39(21): e104472, 2020 11 02.
Article En | MEDLINE | ID: mdl-32929771

In adult hippocampal neurogenesis, stem/progenitor cells generate dentate granule neurons that contribute to hippocampal plasticity. The establishment of a morphologically defined dendritic arbor is central to the functional integration of adult-born neurons. We investigated the role of canonical Wnt/ß-catenin signaling in dendritogenesis of adult-born neurons. We show that canonical Wnt signaling follows a biphasic pattern, with high activity in stem/progenitor cells, attenuation in immature neurons, and reactivation during maturation, and demonstrate that this activity pattern is required for proper dendrite development. Increasing ß-catenin signaling in maturing neurons of young adult mice transiently accelerated dendritic growth, but eventually produced dendritic defects and excessive spine numbers. In middle-aged mice, in which protracted dendrite and spine development were paralleled by lower canonical Wnt signaling activity, enhancement of ß-catenin signaling restored dendritic growth and spine formation to levels observed in young adult animals. Our data indicate that precise timing and strength of ß-catenin signaling are essential for the correct functional integration of adult-born neurons and suggest Wnt/ß-catenin signaling as a pathway to ameliorate deficits in adult neurogenesis during aging.


Hippocampus/metabolism , Neurons/metabolism , Signal Transduction/physiology , beta Catenin/metabolism , Aging/metabolism , Animals , Axin Protein/genetics , Female , Hippocampus/growth & development , Male , Mice , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Neurogenesis/physiology , Wnt Signaling Pathway , beta Catenin/genetics
18.
Oncogene ; 39(30): 5282-5291, 2020 07.
Article En | MEDLINE | ID: mdl-32561853

Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy with limited therapeutic options. The lack of mouse models that recapitulate the genetics of ACC has hampered progress in the field. We analyzed The Cancer Genome Atlas (TCGA) dataset for ACC and found that patients harboring alterations in both p53/Rb and Wnt/ß-catenin signaling pathways show a worse prognosis compared with patients that harbored alterations in only one. To model this, we utilized the Cyp11b2(AS)Cre mouse line to generate mice with adrenocortical-specific Wnt/ß-catenin activation, Trp53 deletion, or the combination of both. Mice with targeted Wnt/ß-catenin activation or Trp53 deletion showed no changes associated with tumor formation. In contrast, alterations in both pathways led to ACC with pulmonary metastases. Similar to ACCs in humans, these tumors produced increased levels of corticosterone and aldosterone and showed a high proliferation index. Gene expression analysis revealed that mouse tumors exhibited downregulation of Star and Cyp11b1 and upregulation of Ezh2, similar to ACC patients with a poor prognosis. Altogether, these data show that altering both Wnt/ß-catenin and p53/Rb signaling is sufficient to drive ACC in mouse. This autochthonous model of ACC represents a new tool to investigate the biology of ACC and to identify new treatment strategies.


Adrenal Cortex Neoplasms/genetics , Disease Models, Animal , Tumor Suppressor Protein p53/genetics , Wnt Signaling Pathway/genetics , beta Catenin/genetics , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/genetics , Adrenocortical Carcinoma/pathology , Animals , Cell Proliferation/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Mice, Knockout , Mice, Transgenic , Prognosis
19.
Cancer Lett ; 487: 53-62, 2020 09 01.
Article En | MEDLINE | ID: mdl-32473241

Tumor-stromal interaction is implicated in tumor progression. Although CCR1 expression in myeloid cells could be associated with pro-tumor activity, it remains elusive whether disruption of CCR1-mediated myeloid cell accumulation can suppress tumor progression. Here, we investigated the role of CCR1 depletion in myeloid cells in two syngeneic colorectal cancer mouse models: MC38, a transplanted tumor model and CMT93, a liver metastasis model. Both cells induced tumor accumulation of CCR1+ myeloid cells that express MMP2, MMP9, iNOS, and VEGF. Lack of the Ccr1 gene in host mice dramatically reduced MC38 tumor growth as well as CMT93 liver metastasis. To delineate the contribution of CCR1+ myeloid cells, we performed bone marrow (BM) transfer experiments in which sub-lethally irradiated wild-type mice were reconstituted with BM from either wild-type or Ccr1-/- mice. Mice reconstituted with Ccr1-/- BM exhibited marked suppression of MC38 tumor growth and CMT93 liver metastasis, compared with control mice. Consistent with these results, administration of a neutralizing anti-CCR1 monoclonal antibody, KM5908, significantly suppressed MC38 tumor growth and CMT93 liver metastases. Our findings highlight the importance of the application of CCR1 blockade as a therapeutic strategy.


Cell- and Tissue-Based Therapy , Colorectal Neoplasms/genetics , Liver Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Line, Tumor , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Disease Models, Animal , Disease Progression , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Humans , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Liver Neoplasms/therapy , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Mice , Myeloid Cells/metabolism , Myeloid Cells/pathology , Neoplasm Metastasis , Nitric Oxide Synthase Type II/genetics , Protein Serine-Threonine Kinases/therapeutic use , Vascular Endothelial Growth Factor A/genetics
20.
Cell Rep ; 31(3): 107524, 2020 04 21.
Article En | MEDLINE | ID: mdl-32320669

Activating mutations in the canonical Wnt/ß-catenin pathway are key drivers of hyperplasia, the gateway for tumor development. In a wide range of tissues, this occurs primarily through enhanced effects on cellular proliferation. Whether additional mechanisms contribute to ß-catenin-driven hyperplasia remains unknown. The adrenal cortex is an ideal system in which to explore this question, as it undergoes hyperplasia following somatic ß-catenin gain-of-function (ßcat-GOF) mutations. Targeting ßcat-GOF to zona Glomerulosa (zG) cells leads to a progressive hyperplastic expansion in the absence of increased proliferation. Instead, we find that hyperplasia results from a functional block in the ability of zG cells to transdifferentiate into zona Fasciculata (zF) cells. Mechanistically, zG cells demonstrate an upregulation of Pde2a, an inhibitor of zF-specific cAMP/PKA signaling. Hyperplasia is further exacerbated by trophic factor stimulation leading to organomegaly. Together, these data indicate that ß-catenin drives adrenal hyperplasia through both proliferation-dependent and -independent mechanisms.


Adrenal Hyperplasia, Congenital/metabolism , Adrenal Hyperplasia, Congenital/pathology , beta Catenin/metabolism , Adrenal Hyperplasia, Congenital/genetics , Animals , Cell Transdifferentiation/physiology , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , beta Catenin/genetics
...