Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 24(3): 467-479, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38126917

RESUMEN

Multiple protocols have been reported to fabricate paper-based analytical devices (PADs). However, some of these techniques must be revised because of the instrumentation required. This paper describes a versatile and globally affordable method to fabricate PADs using office paper as a substrate and a laser printing technique to define hydrophobic barriers on paper surfaces. To demonstrate the feasibility of the alternatives proposed in this study, the fabrication of devices for three types of detection commonly associated with using PADs was demonstrated: colorimetric detection, electrochemical detection, and mass spectrometry associated with a paper-spray ionization (PSI-MS) technique. Besides that, an evaluation of the type of paper used and chemical modifications required on the substrate surface are also presented in this report. Overall, the developed protocol was suitable for using office paper as a substrate, and the laser printing technique as an efficient fabrication method when using this substrate is accessible at a resource-limited point-of-need. Target analytes were used as a proof of concept for these detection techniques. Colorimetric detection was carried out for acetaminophen, iron, nitrate, and nitrite with limits of detection of 0.04 µg, 4.5 mg mL-1, 2.7 µmol L-1, and 6.8 µmol L-1, respectively. A limit of detection of 0.048 fg mL-1 was obtained for the electrochemical analysis of prostate-specific antigen. Colorimetric and electrochemical devices revealed satisfactory performance when office paper with a grammage of 90 g m-2 was employed. Methyldopa analysis was also carried out using PSI-MS, which showed a good response in the same paper weight and behavior compared to chromatographic paper.

2.
Anal Chim Acta ; 1185: 339067, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34711313

RESUMEN

Voltammetry and amperometry are inexpensive and high-performance analytical techniques. However, their lack of selectivity limits their use in complex matrices such as biological, environmental, and food samples. Therefore, voltammetric and amperometric analyses of these samples usually require time-consuming and laborious sample pretreatments. In this study, we present a simple and cost-effective approach to fabricate a miniaturized electrochemical cell that can be easily coupled to a head space-like gas extraction procedure in such a way the sample pretreatment and voltammetric detection are performed in a single step. As a proof of concept, we have used the proposed system to quantify sulfite in beverage samples after its conversion to SO2(g). Despite the simplicity and low cost of the proposed system, it provided good analytical performance and a limit of detection of 4.0 µmol L-1 was achieved after only 10 min of extraction. The proposed system is quite versatile since it can be applied to quantify any volatile electroactive species. Also, the proposed system provides a unique way to assess real-time extraction curves, which are essential to study and optimize new gas extraction procedures. Therefore, the approach described in this study could contribute to both applied and fundamental Analytical Chemistry.


Asunto(s)
Técnicas Electroquímicas , Sulfitos , Bebidas/análisis , Electrodos , Límite de Detección
3.
Anal Chim Acta ; 1147: 116-123, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33485570

RESUMEN

This study reports a new electrochemical method for tryptamine determination using a paper-based microfluidic device and a thermoplastic electrode (TPE) as an amperometric detector. Tryptamine (Tryp) is a biogenic amine present in drinks and foods. Even though this compound has some beneficial effects on human health, the ingestion of foods with high concentrations of Tryp may be detrimental, which justifies the need for monitoring the Tryp levels. The TPEs were made from 50% carbon black and 50% polycaprolactone and characterized by cyclic voltammetry, demonstrating enhancement in the analytical response compared to other carbon composites. TPEs also showed a better antifouling effect for Tryp compared to conventional glassy carbon electrodes. Once characterized, the electrodes were incorporated into the microfluidic device to determine Tryp in water and cheese samples using amperometry. A linear range was achieved from 10 to 75 µmol L-1 with limits of detection and quantification of 3.2 and 10.5 µmol L-1, respectively. Therefore, this work shows promising findings of the electrochemical determination of Tryp, bringing valuable results regarding the electrochemical properties of thermoplastic composites.


Asunto(s)
Técnicas Electroquímicas , Dispositivos Laboratorio en un Chip , Carbono , Electrodos , Humanos , Triptaminas
4.
ACS Sens ; 5(1): 274-281, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31898461

RESUMEN

A simple and low-cost continuous-flow (CF) electrochemical paper-based analytical device (ePAD) coupled with thermoplastic electrodes (TPEs) was developed. The fast, continuous flow combined with flow injection analysis was made possible by adding two inlet reservoirs to the same paper-based hollow channel flowing over detection electrodes, terminating in a fan-shaped pumping reservoir. The upstream inlet reservoir was filled with buffer and provided constant flow through the device. Sample injections were performed by adding 2 µL of the sample to the downstream sample inlet. Differences in flow resistance resulted in sample plugs displacing buffer as the solution flowed over the working electrodes. The electrodes were fabricated by mixing carbon black and polycaprolactone (50% w/w). CF-TPE-ePADs were characterized with chronoamperometry using ferrocenylmethyl trimethylammonium as the electrochemical probe. Optimized flow rates and injection volumes gave analysis times roughly an order of magnitude faster than those of previously reported flow injection analysis ePADs. To demonstrate applicability, the CF-TPE-ePADs were used to quantify caffeic acid in three different tea samples. The proposed method had a linear range from 10 to 500 µmol L-1 and limits of detection and quantification of 2.5 and 8.3 µmol L-1, respectively. Our approach is promising for fabricating simple, inexpensive, yet high-performance, flow injection analysis devices using paper substrates and easy-to-make electrodes that do not require external mechanical pumping systems or complicated valves.


Asunto(s)
Técnicas Electroquímicas/métodos , Diseño de Equipo/métodos , Análisis de Inyección de Flujo/métodos
5.
Food Chem ; 173: 763-9, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25466087

RESUMEN

In this work, a square-wave voltammetric method based on sulphite electrochemical reduction was developed for quantification of this preservative in commercial beverages. A carbon-paste electrode chemically modified with multiwalled carbon nanotubes was used as the working electrode. Under the optimised experimental conditions, a linear response to sulphite concentrations from 1.6 to 32 mg SO2 L(-1) (25-500 µmol L(-1) of sulphite), with a limit of detection of 1.0 mg SO2 L(-1) (16 µmol L(-1) of sulphite), was obtained. This method does not suffer interference from other common beverage additives such as ascorbic acid, fructose, and sucrose, and it enables fast and reliable sulphite determination in beverages, with minimal sample pretreatment. Despite its selectivity, the method is not applicable to red grape juice or red wine samples, because some of their components produce a cathodic peak at almost the same potential as that of sulphite reduction.


Asunto(s)
Bebidas/análisis , Nanotubos de Carbono/química , Sulfitos/análisis , Ácido Ascórbico/química , Técnicas Electroquímicas , Electrodos , Fructosa/química , Límite de Detección , Sacarosa/química , Vitis/química , Vino/análisis
6.
Anal Chim Acta ; 584(2): 295-301, 2007 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-17386618

RESUMEN

A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica (SiAt-SPCPE) was applied to Ni(2+) determination in commercial ethanol fuel samples. The proposed method comprised four steps: (1) Ni(2+) preconcentration at open circuit potential directly in the ethanol fuel sample, (2) transference of the electrode to an electrochemical cell containing DMG, (3) differential pulse voltammogram registering and (4) surface regeneration by polishing the electrode. The proposed method combines the high Ni(2+) adsorption capacity presented by 2-aminothiazole organofunctionalized silica with the electrochemical properties of the Ni(DMG)(2) complex, whose electrochemical reduction provides the analytical signal. All experimental parameters involved in the proposed method were optimized. Using a preconcentration time of 20 min, it was obtained a linear range from 7.5 x 10(-9) to 1.0 x 10(-6) mol L(-1) with detection limit of 2.0 x 10(-9) mol L(-1). Recovery values between 96.5 and 102.4% were obtained for commercial samples spiked with 1.0 micromol L(-1) Ni(2+) and the developed electrode was totally stable in ethanolic solutions. The contents of Ni(2+) found in the commercial samples using the proposed method were compared to those obtained by graphite furnace atomic absorption spectroscopy by using the F- and t-test. Neither the F- nor t-values exceeded the critical values at 95% confidence level, confirming that there are not statistical differences between the results obtained by both methods. These results indicate that the developed electrode can be successfully employed to reliable Ni(2+) determination in commercial ethanol fuel samples without any sample pretreatment or dilution step.


Asunto(s)
Fuentes Generadoras de Energía , Etanol/química , Níquel/análisis , Adsorción , Carbono/química , Electrodos , Níquel/química , Oximas/química , Parafina/química , Dióxido de Silicio/química , Tiazoles/química
7.
Talanta ; 71(2): 771-7, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19071372

RESUMEN

Solid paraffin-based carbon paste electrodes modified with 2-aminothiazole organofunctionalized silica have been applied to the anodic stripping determination of copper ions in ethanol fuel samples without any sample treatment. The proposed method comprised four steps: (1) copper ions preconcentration at open circuit potential directly in the ethanol fuel sample; (2) exchange of the solution and immediate cathodic reduction of the absorbate at controlled potential; (3) differential pulse anodic stripping voltammetry; (4) electrochemical surface regeneration by applying a positive potential in acid media. Factors affecting the preconcentration, reduction and stripping steps were investigated and the optimum conditions were employed to develop the analytical procedure. Using a preconcentration time of 20min and reduction time of 120s at -0.3V versus Ag/AgCl(sat) a linear range from 7.5x10(-8) to 2.5x10(-6)mol L(-1) with detection limit of 3.1x10(-8)mol L(-1) was obtained. Interference studies have shown a decrease in the interference effect according to the sequence: Ni>Zn>Cd>Pb>Fe. However, the interference effects of these ions have not forbidden the application of the proposed method. Recovery values between 98.8 and 102.3% were obtained for synthetic samples spiked with known amounts of Cu(2+) and interfering metallic ions. The developed electrode was successfully applied to the determination of Cu(2+) in commercial ethanol fuel samples. The results were compared to those obtained by flame atomic absorption spectroscopy by using the F-test and t-test. Neither F-value nor t-value have exceeded the critical values at 95% confidence level, confirming that there are no significant differences between the results obtained by both methods.

8.
Farmaco ; 60(8): 671-4, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15961086

RESUMEN

In this work, electrochemical oxidation of albendazole (ABZ) was carried out using a glassy carbon-rotating disk electrode. Development of electroanalytical methodology for ABZ quantification in pharmaceutical formulations was also proposed by using linear sweep voltammetric technique. Electrochemical oxidation is observed for ABZ at E(1/2)=0.99 V vs. Ag/AgCl(sat), when an anodic wave is observed. Kinetic parameters obtained for ABZ oxidation exhibited a standard heterogeneous rate constant for the electrodic process equal to (1.51+/-0.07) x 10(-5) cm s(-1), with a alphan(a) value equal to 0.76. Limiting current dependence against ABZ concentration exhibited linearity on 5.0 x 10(-5) to 1.0 x 10(-2) mol l(-1) range, being obtained a detection limit of 2.4 x 10(-5) mol l(-1). Proposed methodology was applied to ABZ quantification in pharmaceutical formulations.


Asunto(s)
Albendazol/química , Carbono/química , Electroquímica , Electrodos , Vidrio , Oxidación-Reducción , Preparaciones Farmacéuticas/química , Rotación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA