Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biodivers Data J ; 11: e100955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720662

RESUMEN

Animal-mediated pollination is an essential ecosystem service for the production of many fruit trees. To reveal the community composition of flower-visiting wild insects which potentially contribute to fruit production and to examine the effects of geographic location, local meteorological conditions and locally introduced domesticated pollinators on them, we investigated the community composition of insects visiting the flowers (hereafter, "visitors") of apple, Japanese pear and Oriental persimmon for 1‒3 years at 20 sites around Japan. While most of the variation (82%) of the community composition was explained by tree species with a slight contribution by geographic distance (2%), maximum temperature and tree species contributed 62% and 41% of the variation in total abundance of the visitors, respectively. Though the dominant families of the visitors varied spatiotemporally, the community composition of the visitors of apple and Japanese pear clearly differed from that of Oriental persimmon. While Andrenidae and Syrphidae together accounted for 46%‒64% of the visitors of apple and Japanese pear, Apidae represented 57% of the visitors of Oriental persimmon. The taxonomic richness, diversity and evenness of the visitors were best predicted by locally introduced domesticated pollinators and local meteorological conditions of wind speed and maximum temperature. Amongst these selected factors, locally introduced domesticated pollinators could have the largest impact. It seemed to be strongly related to the reduction of taxonomic richness, diversity and evenness of the visitors, accounting for 41‒89% of the variation. Results suggested that the community composition and total abundance of potential pollinators were predominantly determined by tree species and temperature, but locally introduced domesticated pollinators could have a determinantal pressure on the taxonomic diversity of the community.

2.
Sci Rep ; 13(1): 3099, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813829

RESUMEN

Response diversity to environmental change among species is important for the maintenance of ecosystem services, but response diversity to changes in multiple environmental parameters is largely unexplored. Here, we examined how insect visitations to buckwheat flowers differ among species groups in response to changes in multiple weather variables and landscape structures. We found differences in responses to changes in weather conditions among insect taxonomic groups visiting buckwheat flowers. Beetles, butterflies, and wasps were more active in sunny and/or high-temperature conditions, whereas ants and non-syrphid flies showed the opposite pattern. When looking closely, the different response pattern among insect groups was itself shown to be different from one weather variable to another. For instance, large insects were responsive to temperatures more than small insects while smaller insects were responsive to sunshine duration more than large insects. Furthermore, responses to weather conditions differed between large and small insects, which agreed with the expectation that optimal temperature for insect activity depends on body size. Responses to spatial variables also differed; large insects were more abundant in fields with surrounding forests and mosaic habitats, whereas small insects were not. We suggest that response diversity at multiple spatial and temporal niche dimensions should be a focus of future studies of the biodiversity-ecosystem service relationships.


Asunto(s)
Productos Biológicos , Mariposas Diurnas , Fagopyrum , Animales , Polinización/fisiología , Ecosistema , Insectos/fisiología , Flores/fisiología , Tiempo (Meteorología)
3.
Insects ; 13(2)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35206724

RESUMEN

We investigated the ecological traits of emerging adults and the boring density in Aromia bungii-infested flowering cherry (Cerasus × yedoensis 'Somei-yoshino') and peach (Prunus persica) trees to evaluate their suitability as food resources for A. bungii, and their vulnerability to infestation. The number of adults per m3 that emerged from P. persica was 10-times larger than from C. × yedoensis, and the numbers of emergence holes, entrance holes, and pupal chambers were also larger in P. persica logs. The lifetime fecundity of adults that emerged from P. persica was also higher. Elytral length, sex ratios, and adult lifespans did not differ between the two host trees. Our results indicate that peach trees provide more suitable conditions than do flowering cherry trees for A. bungii larvae. Although flowering cherry trees, primarily C. × yedoensis, which are currently grown as street or ornamental trees in Japan, have been more severely affected by A. bungii to date, the greater risk in the long term is to P. persica, an agricultural species in the main producing areas surrounding the Kanto region.

4.
Insects ; 12(7)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209802

RESUMEN

In recent years, insecticide trunk injection was put into practical use for controlling wood boring pests. However, few studies have investigated the dose-response relationships between insecticides and wood-boring pests in detail. This study used two commercial formulations of the neonicotinoid insecticides thiamethoxam and dinotefuran and investigated their dose-response relationships with invasive wood borer Aromia bungii (Coleoptera: Cerambycidae) larvae. Neonates and late instar larvae were reared with an artificial diet containing different insecticide concentrations (0.01-100 ppm) in the laboratory, and their diet excavation activity, survival rate, and weight change were recorded. Diet excavation immediately dropped in larvae exposed to high concentrations of thiamethoxam or dinotefuran (≥1 ppm in neonates and ≥10 ppm in late instar larvae). The weight and survival rate gradually declined over 12 weeks in late instar larvae. These results suggest that the two neonicotinoids intoxicate and debilitate A. bungii larvae gradually to death. In practical use, rapid suppression of A. bungii wood boring damage can be expected by trunk injection of neonicotinoid insecticides. However, a relatively long-term retention of the insecticides may be required to kill large larvae. Neonates may be controlled with lower insecticide dosage and shorter exposure than larger larvae.

5.
J Econ Entomol ; 110(2): 447-452, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334064

RESUMEN

To conserve local biodiversity and ensure the provision of pollination services, it is essential to understand the impact of pesticides on wild honey bees. Most studies that have investigated the effects of pesticides on honey bees have focused on the European honey bee (Apis mellifera (Hymenoptera: Apidae)), which is commonly domesticated worldwide. However, the Asian honey bee (Apis cerana) is widely distributed throughout Asia, and toxicity data are lacking for this species. This study aimed to fill this important knowledge gap. In this study, we determined the acute contact toxicity in A. cerana to various pesticides, including neonicotinoids, fipronil, organophosphorus, synthetic pyrethroids, carbamate, and anthranilic diamide. Based on the test duration of 48 h of contact LD50 tests, A. cerana was most sensitive to dinotefuran (0.0014 µg/bee), followed by thiamethoxam (0.0024 µg/bee) and fipronil (0.0025 µg/bee). Dinotefuran is used extensively in Asia, thereby potentially creating a substantial hazard. More generally, A. cerana was approximately one order of magnitude more sensitive than was A. mellifera to most of the pesticides evaluated. The results of our study suggest that neonicotinoid pesticides should not be considered as a single group that acts uniformly on all honey bees, and that more careful management strategies are required to conserve A. cerana populations than A. mellifera.


Asunto(s)
Abejas/efectos de los fármacos , Resistencia a los Insecticidas , Insecticidas/farmacología , Animales , Japón
6.
PLoS One ; 11(11): e0167233, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27898704

RESUMEN

Declines in honeybee populations have been a recent concern. Although causes of the declines remain unclear, environmental factors may be responsible. We focused on the potential environmental determinants of local populations of wild honeybees, Apis cerana japonica, in Japan. This subspecies has little genetic variation in terms of its mitochondrial DNA sequences, and genetic variations at nuclear loci are as yet unknown. We estimated the genetic structure and environmental determinants of local genetic diversity in nuclear microsatellite genotypes of fathers and mothers, inferred from workers collected at 139 sites. The genotypes of fathers and mothers showed weak isolation by distance and negligible genetic structure. The local genetic diversity was high in central Japan, decreasing toward the peripheries, and depended on the climate and land use characteristics of the sites. The local genetic diversity decreased as the annual precipitation increased, and increased as the proportion of urban and paddy field areas increased. Positive effects of natural forest area, which have also been observed in terms of forager abundance in farms, were not detected with respect to the local genetic diversity. The findings suggest that A. cerana japonica forms a single population connected by gene flow in its main distributional range, and that climate and landscape properties potentially affect its local genetic diversity.


Asunto(s)
Abejas/genética , Ambiente , Variación Genética , Animales , Teorema de Bayes , Clima , Análisis por Conglomerados , Flujo Génico , Genotipo , Haploidia , Japón , Repeticiones de Microsatélite/genética
8.
Ecol Evol ; 6(14): 4836-48, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27547317

RESUMEN

Models and data used to describe species-area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species-area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species-area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density-area relationships and occurrence probability-area relationships can alter the form of species-area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a variety of study designs and allows the inclusion of additional environmental covariates.

9.
Proc Natl Acad Sci U S A ; 113(1): 146-51, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26621730

RESUMEN

Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Insectos/fisiología , Polinización , Animales , Hormigas/fisiología , Abejas/fisiología , Ecosistema , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Avispas/fisiología
10.
PLoS One ; 9(10): e109881, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25279817

RESUMEN

Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5-1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost.


Asunto(s)
Aeronaves , Recolección de Datos/métodos , Monitoreo del Ambiente , Bosques , Tecnología de Sensores Remotos , Árboles , Biodiversidad , Ecosistema , Hojas de la Planta
11.
Environ Entomol ; 43(2): 312-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24534078

RESUMEN

To determine differences in distribution patterns between the soybean pest Riptortus pedestris F. (Hemiptera: Alydidae) and its egg parasitoid Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae) in source and cultivated habitats, we compared their abundances in soybean fields and forest edges, which were assumed to be the overwintering sites of R. pedestris. We set synthetic attractant-baited traps for both species over 2 yr in mid-August, just before R. pedestris normally colonizes soybeans. During one of the 2 yr, we also examined the rate of parasitism using an egg trap. The numbers of both R. pedestris and O. nezarae trapped at forest edges were higher than the numbers caught in soybean fields, suggesting that forest edges are important source habitats. Compared with R. pedestris, the abundance of O. nezarae in soybean fields was considerably lower than in forest edges, presumably because of differences in their dispersal abilities and their responses to landscape structure and resource distribution. Better pest control service by O. nezarae was provided at forest edges than in soybean fields. Therefore, when using pest control by O. nezarae in soybean fields, spatial arrangement and distance from the forest edge should be considered.


Asunto(s)
Distribución Animal/fisiología , Ecosistema , Heterópteros/fisiología , Heterópteros/parasitología , Interacciones Huésped-Parásitos/fisiología , Avispas/fisiología , Agricultura/métodos , Animales , Bosques , Control de Insectos/métodos , Japón , Óvulo/parasitología , Dinámica Poblacional , Glycine max/parasitología
12.
Science ; 339(6127): 1608-11, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23449997

RESUMEN

The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Insectos/fisiología , Polinización , Animales , Abejas/fisiología , Flores/fisiología
13.
PLoS One ; 8(2): e56678, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23457602

RESUMEN

In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional habitats, leading to significant positive effects for bees in general.


Asunto(s)
Abejas , Conservación de los Recursos Naturales/métodos , Regeneración , Árboles/crecimiento & desarrollo , Animales , Ecosistema , Polinización , Factores de Tiempo , Árboles/fisiología
14.
J Parasitol ; 99(4): 639-49, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23496793

RESUMEN

The nematode family Aphelenchoididae is a highly divergent group that contains plant parasites, predators, fungal feeders, and insect parasites. It is taxonomically separated into 7 subfamilies. Although molecular phylogenetic relationships among 6 of the subfamilies have been clarified, the phylogenetic position of the subfamily Entaphelenchinae, which is composed of endoparasites of insects, remains unclear. Here, a new entaphelenchid species, Peraphelenchus orientalis n. sp., was isolated from the body cavities of burying beetles, Nicrophorus quadripunctatus, with a 14% prevalence (5 out of 36). The phylogenetic position of the subfamily within the family Aphelenchoididae was determined using morphological and molecular data for the new species. The rRNA sequences suggested that the new species belongs to Clade 3 of Aphelenchoididae, which mostly consists of predators and insect parasites. Although molecular sequences from other entaphelenchid species were not available, the subfamily appears to be monophyletic. The new species is characterized by the absence of a functional rectum and anus and by the presence of 3 pairs of male genital papillae, a loosely coiled male body, and a W-shaped male spicule. Compared with the original description of Peraphelenchus necrophori, P. orientalis n. sp. has significant typological differences, possibly because of misinterpretations during the original description of P. necrophori. Excluding these questionable characters, i.e., presence-absence of functional rectum and anus and number of male genital papillae, the new species is distinguished from P. necrophori by minor morphological characters and morphometric values.


Asunto(s)
Escarabajos/parasitología , Filogenia , Tylenchida/clasificación , Animales , Teorema de Bayes , Femenino , Funciones de Verosimilitud , Masculino , Datos de Secuencia Molecular , Alineación de Secuencia , Tylenchida/anatomía & histología , Tylenchida/genética
15.
Ecol Lett ; 16(5): 584-99, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23489285

RESUMEN

Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high-quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.


Asunto(s)
Agricultura , Abejas/fisiología , Ecosistema , Modelos Teóricos , Polinización , Animales , Clima , Productos Agrícolas , Flores , Densidad de Población
16.
Naturwissenschaften ; 99(11): 959-65, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23086393

RESUMEN

The intensity of interspecific interactions between hosts and symbionts varies among populations of each organism because of differences in the biotic and abiotic environment. We found geographic mosaics in associations between lucanid beetles (Dorcus rectus and Dorcus striatipennis) and symbiotic mites (Haitlingeria sp. and Sandrophela sp., respectively) that were caused by the collapse of host specificity in the northern part of Japan. Haitlingeria sp. was only collected from the surface of the exoskeleton of D. rectus in south and central Japan. Sandrophela sp. showed host specificity in southern to central Japan but was found on both beetle species in areas where Haitlingeria sp. was not found. Because Haitlingeria sp. was able to reproduce on D. rectus collected from Haitlingeria-free regions and no significant differences were observed in average temperature between the host-specific and nonspecific regions bordering on each other, we suggest that the expansion of Haitlingeria sp. in the north has been limited for unknown reasons. When both mites were placed together on D. rectus, only Haitlingeria sp. reproduced, probably because it killed Sandrophela sp., especially juveniles. Thus, we conclude that Sandrophela sp. has expanded its host use to include D. rectus in areas where Haitlingeria sp. is absent. We hypothesise that false host specificity in the canestriniids has been maintained by habitat isolation and/or aggressive behaviour toward competitors. We suggest that host-specific canestriniids provide benefits to hosts that do not develop countermeasures to exclude micro- or macroparasites from their surfaces.


Asunto(s)
Escarabajos/parasitología , Especificidad del Huésped , Ácaros/fisiología , Simbiosis/fisiología , Animales , Ecosistema , Japón , Temperatura
17.
PLoS One ; 7(8): e43865, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952792

RESUMEN

BACKGROUND: The molecular operational taxonomic unit (MOTU) has recently been applied to microbial and microscopic animal biodiversity surveys. However, in many cases, some of the MOTUs cannot be definitively tied to any of the taxonomic groups in current databases. To surmount these limitations, the concept of "reverse taxonomy" has been proposed, i.e. to primarily list the MOTUs with morphological information, and then identify and/or describe them at genus/species level using subsamples or by re-isolating the target organisms. Nevertheless, the application of "reverse taxonomy" has not been sufficiently evaluated. Therefore, the practical applicability of "reverse taxonomy" is tested using termite-associated nematodes as a model system for phoretic/parasitic organisms which have high habitat specificity and a potential handle (their termite host species) for re-isolation attempts. METHODOLOGY: Forty-eight species (from 298 colonies) of termites collected from the American tropics and subtropics were examined for their nematode associates using the reverse taxonomy method and culturing attempts (morphological identification and further sequencing efforts). The survey yielded 51 sequence types ( =  MOTUs) belonging to 19 tentatively identified genera. Within these, four were identified based on molecular data with preliminary morphological observation, and an additional seven were identified or characterized from successful culturing, leaving eight genera unidentified. CONCLUSIONS: That 1/3 of the genera were not successfully identified suggests deficiencies in the depth of available sequences in the database and biological characters, i.e. usually isolated as phoretic/parasitic stages which are not available for morphological identification, and too many undiscovered lineages of nematodes. Although there still is the issue of culturability of nematodes, culturing attempts could help to make reverse taxonomy methods more effective. However, expansion of the database, i.e., production of more DNA barcodes tied to biological information by finding and characterizing additional new and known lineages, is necessary for analyzing functional diversity.


Asunto(s)
Biodiversidad , Clasificación/métodos , Isópteros/clasificación , Nematodos/parasitología , Animales , Filogenia
18.
BMC Ecol ; 12: 11, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22817690

RESUMEN

BACKGROUND: The positive relationship between habitat area and species number is considered a fundamental rule in ecology. This relationship predicts that the link number of species interactions increases with habitat area, and structure is related to habitat area. Biological invasions can affect species interactions and area relationships. However, how these relationships change at different spatial scales has remained unexplored. We analysed understory plant-pollinator networks in seven temperate forest sites at 20 spatial scales (radius 120-2020 m) to clarify scale-associated relationships between forest area and plant-pollinator networks. RESULTS: The pooled data described interactions between 18 plant (including an exotic) and 89 pollinator (including an exotic) species. The total number of species and the number of interaction links between plant and pollinator species were negatively correlated with forest area, with the highest correlation coefficient at radii of 1520 and 1620 m, respectively. These results are not concordant with the pattern predicted by species-area relationships. However, when associations with exotic species were excluded, the total number of species and the number of interaction links were positively correlated with forest area (the highest correlation coefficient at a radius of 820 m). The network structure, i.e., connectance and nestedness, was also related to forest area (the highest correlation coefficients at radii of 720-820 m), when associations with exotics were excluded. In the study area, the exotic plant species Alliaria petiolata, which has invaded relatively small forest patches surrounded by agricultural fields, may have supported more native pollinator species than initially expected. Therefore, this invasive plant may have altered the original relationships between forest area and plant-pollinator networks. CONCLUSIONS: Our results demonstrate scale-dependent effects of forest area on the size and structure of plant-pollinator networks. We also suggest that a single exotic plant species can impact plant-pollinator networks, even in temperate continental habitats.


Asunto(s)
Biota , Ecosistema , Insectos/fisiología , Especies Introducidas , Plantas , Animales , Ontario , Polinización , Árboles
19.
Environ Monit Assess ; 178(1-4): 85-94, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20865323

RESUMEN

Many indicators/indices provide information on whether the 2010 biodiversity target of reducing declines in biodiversity have been achieved. The strengths and limitations of the various measures used to assess the success of such measures are now being discussed. Biodiversity dynamics are often evaluated by a single biological population metric, such as the abundance of each species. Here we examined tree population dynamics of 52 families (192 species) at 11 research sites (three vegetation zones) of Japanese old-growth forests using two population metrics: number of stems and basal area. We calculated indices that track the rate of change in all species of tree by taking the geometric mean of changes in population metrics between the 1990s and the 2000s at the national level and at the levels of the vegetation zone and family. We specifically focused on whether indices based on these two metrics behaved similarly. The indices showed that (1) the number of stems declined, whereas basal area did not change at the national level and (2) the degree of change in the indices varied by vegetation zone and family. These results suggest that Japanese old-growth forests have not degraded and may even be developing in some vegetation zones, and indicate that the use of a single population metric (or indicator/index) may be insufficient to precisely understand the state of biodiversity. It is therefore important to incorporate more metrics into monitoring schemes to overcome the risk of misunderstanding or misrepresenting biodiversity dynamics.


Asunto(s)
Biodiversidad , Árboles/crecimiento & desarrollo , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Japón , Árboles/clasificación
20.
Sci Rep ; 1: 132, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22355649

RESUMEN

In terrestrial ecosystems, ecological processes and patterns within focal patches frequently depend on their matrix. Crop fields (focal patches) are often surrounded by a mosaic of other land-use types (matrix), which may act as habitats for organisms and differ in terms of the immigration activities of organisms to the fields. We examined whether matrix quality affects wild pollinator abundance in crop fields, given that the species (Apis cerana) generally nest in the cavities of natural trees. We examined fields of a pollination-dependent crop surrounded by plantations and natural forests, which comprised the matrix. Our analysis revealed a clear positive effect of the natural forest on the pollinator abundance, but the plantation forest had little effects. These indicate that agricultural patches are influenced by their matrix quality and the resulting crop pollinator abundance, suggesting the importance of matrix management initiatives such as forest restoration surrounding agricultural fields to improve crop production.


Asunto(s)
Abejas/fisiología , Productos Agrícolas/crecimiento & desarrollo , Polinización/fisiología , Agricultura , Animales , Conservación de los Recursos Naturales , Ecosistema , Japón , Modelos Biológicos , Árboles/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA