Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 65
1.
Lipids Health Dis ; 23(1): 54, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38388929

BACKGROUND: Dyslipidemias, including familial hypercholesterolemia (FH), are a significant risk factor for cardiovascular diseases. FH is a genetic disorder resulting in elevated levels of low-density lipoprotein cholesterol (LDL-C) and an increased probability of early cardiovascular disorders. Heterozygous familial hypercholesterolemia (HeFH) is the most common form, affecting approximately 1 in 250 individuals worldwide, with a higher prevalence among the French-Canadian population. Childhood is a critical period for screening risk factors, but the recommendation for non-fasting screening remains controversial due to a lack of specific reference values for this state. This study aims to establish reference values for lipid levels in non-fasting children from Sherbrooke, Quebec, Canada, that will be specific for sex, age, and pubertal stages. METHODS: Blood samples and corresponding anthropometric data were collected from 356 healthy children aged from 6 to 13. They were categorized either into two age groups: Cohort 6-8 and Cohort 9-13, or into pubertal stages. Reference values, specifically the 2.5th, 5th, 10th, 50th, 90th, 95th, and 97.5th percentiles were determined using the CLSI C28-A3 guidelines. RESULTS: Lipid profiles did not significantly differ between sexes, except for higher levels of high-density lipoprotein (HDL-C) in boys within Cohort 6-8. HDL-C levels significantly increased, while LDL-C and non-HDL-C levels significantly decreased in both sexes with age. Non-fasting age- and pubertal stages-specific reference values were established. CONCLUSION: This study established reference intervals for lipid markers in non-fasting state within the pediatric French-Canadian population. These findings could be used in dyslipidemia screening in daily practice.


Dyslipidemias , Hyperlipoproteinemia Type II , Male , Female , Humans , Child , Cholesterol, LDL , Reference Values , Canada/epidemiology , Hyperlipoproteinemia Type II/genetics , Puberty , Cholesterol, HDL
2.
Chemosphere ; 352: 141443, 2024 Mar.
Article En | MEDLINE | ID: mdl-38346512

Exposure to halogenated flame retardants (HFRs) has been associated with various adverse effects on human health. Human exposure to HFRs mainly occurs through diet, ingesting contaminated dust, and inhaling contaminated air. Understanding and characterizing the variables linked to these exposure pathways is essential for developing effective risk assessment and mitigation strategies. We investigated indoor environment quality, physiological factors, and diet as potential predictors of HFRs concentration in children's plasma and stool. A selected number of HFRs, including polybrominated diphenyl ethers (PBDEs), Dechlorane-like compounds, and emerging halogenated flame retardants, were measured in children from eastern Quebec (Canada). Information on indoor environment quality, physiological factors, and diet was obtained through self-report questionnaires. Our results show that lower brominated compounds, which are more volatile, were primarily correlated to indoor environment quality. Notably, the use of air purifiers was associated with lower BDE47 and BDE100 levels in blood and newer residential buildings were associated with higher concentrations of BDE47. A significant seasonal variation was found in stool samples, with higher levels of lower brominated PBDEs (BDE47 and BDE100) in samples collected during summer. No association between household income or maternal education degree and HFRs was found. Among emerging compounds, Dec602 and Dec603 were associated with the most variables, including the use of air dehumidifiers, air conditioning, and air purifiers, and the child's age and body fat percentage.


Air Pollution, Indoor , Flame Retardants , Child , Humans , Canada , Flame Retardants/analysis , Air Pollution, Indoor/analysis , Halogenated Diphenyl Ethers/analysis , Dust/analysis , Diet , Environmental Monitoring
3.
Chemosphere ; 344: 140222, 2023 Dec.
Article En | MEDLINE | ID: mdl-37734505

Sixteen halogenated flame retardants including Polybrominated diphenyl ethers (PBDEs), Dechlorane-like compounds, and emerging halogenated flame retardants were measured in stool and plasma samples from children aged 8.9-13.8 years old. Samples were obtained from a Canadian cohort investigating the effect of contaminants on children's neurodevelopment in the Estrie region, Québec, Canada. The method for stool analysis developed for this study showed good recovery for all targeted compounds (73%-93%) with associated relative standard deviation (RSD) in the range of 16.0%-30.7% for most compounds except for the thermosensitive BDE209, OBTMBI, and BTBPE, which showed slightly higher RSD, i.e., 49.3%, 37.2%, and 34.9% respectively. Complementarity investigation of stool and blood samples allowed us to better characterize human exposure to these halogenated flame retardants. Exposure patterns differed significantly between stool and blood, notably in the relative abundance of BDE47, BDE100, BDE99, and BDE153 and the detection frequencies of BDE209, syn-DP, anti-DP, and DBDPE. There was no correlation between the two matrices' PBDEs concentration levels except for BDE153 (rho = 0.44, p < 0.01). Our results indicate that future epidemiological studies may benefit from the use of stool as a complementary matrix to blood, especially investigations into chemical impacts on the gut microbiome. Results also revealed that children from the GESTE cohort, an Eastern Canadian semi-rural cohort, are exposed to both historical and emergent flame retardants.


Flame Retardants , Gastrointestinal Microbiome , Humans , Child , Adolescent , Environmental Monitoring/methods , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Canada
4.
Environ Res ; 222: 115367, 2023 04 01.
Article En | MEDLINE | ID: mdl-36709028

Children are exposed to various environmental organic and inorganic contaminants with effects on health outcomes still largely unknown. Many matrices (e.g., blood, urine, nail, hair) have been used to characterize exposure to organic and inorganic contaminants. The sampling of feces presents several advantages; it is non-invasive and provides a direct evaluation of the gut microbiome exposure to contaminants. The gut microbiome is a key factor in neurological development through the brain-gut axis. Its composition and disturbances can affect the neurodevelopment of children. Characterization of children exposure to contaminants is often performed on vulnerable populations (e.g., from developing countries, low-income neighborhoods, and large urban centers). Data on the exposure of children from middle-class, semi-urban, and mid-size populations to contaminants is scarce despite representing a significant fraction of the population in North America. In this study, 73 organics compounds from different chemical classes and 22 elements were analyzed in 6 years old (n = 84) and 10 years old (n = 119) children's feces from a middle-class, semi-urban, mid-size population cohort from Eastern Canada. Results show that 67 out of 73 targeted organics compounds and all elements were at least detected in one child's feces. Only caffeine (97% & 80%) and acetaminophen (28% & 48%) were detected in more than 25% of the children's feces, whereas all elements besides titanium were detected in more than 50% of the children.


Environmental Exposure , Child , Humans , Feces , Canada , North America
5.
Cereb Cortex ; 33(5): 1895-1912, 2023 02 20.
Article En | MEDLINE | ID: mdl-35535719

Structural and functional magnetic resonance imaging (MRI) studies have suggested a neuroanatomical basis that may underly attention-deficit-hyperactivity disorder (ADHD), but the anatomical ground truth remains unknown. In addition, the role of the white matter (WM) microstructure related to attention and impulsivity in a general pediatric population is still not well understood. Using a state-of-the-art structural connectivity pipeline based on the Brainnetome atlas extracting WM connections and its subsections, we applied dimensionality reduction techniques to obtain biologically interpretable WM measures. We selected the top 10 connections-of-interests (located in frontal, parietal, occipital, and basal ganglia regions) with robust anatomical and statistical criteria. We correlated WM measures with psychometric test metrics (Conner's Continuous Performance Test 3) in 171 children (27 Dx ADHD, 3Dx ASD, 9-13 years old) from the population-based GESTation and Environment cohort. We found that children with lower microstructural complexity and lower axonal density show a higher impulsive behavior on these connections. When segmenting each connection in subsections, we report WM alterations localized in one or both endpoints reflecting a specific localization of WM alterations along each connection. These results provide new insight in understanding the neurophysiology of attention and impulsivity in a general population.


Attention Deficit Disorder with Hyperactivity , White Matter , Humans , Child , Adolescent , White Matter/pathology , Impulsive Behavior , Magnetic Resonance Imaging , Basal Ganglia , Attention/physiology , Brain
6.
Psychiatry Res Neuroimaging ; 327: 111568, 2022 12.
Article En | MEDLINE | ID: mdl-36434901

The apparent increase in the prevalence of the attention deficit hyperactivity disorder (ADHD) diagnosis raises many questions regarding the variability of the subjective diagnostic method. This comprehensive review reports findings in studies assessing white matter (WM) bundles in diffusion MRI and symptom severity in children with ADHD. These studies suggested the involvement of the connections between the frontal, parietal, and basal ganglia regions. This review discusses the limitations surrounding diffusion tensor imaging (DTI) and suggests novel imaging techniques allowing for a more reliable representation of the underlying biology. We propose a more inclusive approach to studying ADHD that includes known endophenotypes within the ADHD diagnosis. Aligned with the Research Domain Criteria Initiative, we also propose to investigate attentional capabilities and impulsive behaviours outside of the borders of the diagnosis. We support the existing hypothesis that ADHD originates from a developmental error and propose that it could lead to an accumulation in time of abnormalities in WM microstructure and pathways. Finally, state-of-the-art diffusion processing and novel artificial intelligence approaches would be beneficial to fully understand the pathophysiology of ADHD.


Attention Deficit Disorder with Hyperactivity , White Matter , Child , Humans , White Matter/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Diffusion Tensor Imaging , Artificial Intelligence , Impulsive Behavior
7.
Article En | MEDLINE | ID: mdl-35954712

Pregnant individuals are exposed to acetaminophen and caffeine, but it is unknown how these exposures interact with the developing gut microbiome. We aimed to determine whether acetaminophen and/or caffeine relate to the childhood gut microbiome and whether features of the gut microbiome alter the relationship between acetaminophen/caffeine and neurodevelopment. Forty-nine and 85 participants provided meconium and stool samples at 6-7, respectively, for exposure and microbiome assessment. Fecal acetaminophen and caffeine concentrations were quantified, and fecal DNA underwent metagenomic sequencing. Caregivers and study staff assessed the participants' motor and cognitive development using standardized scales. Prenatal exposures had stronger associations with the childhood microbiome than concurrent exposures. Prenatal acetaminophen exposure was associated with a trend of lower gut bacterial diversity in childhood [ß = -0.17 Shannon Index, 95% CI: (-0.31, -0.04)] and was marginally associated with differences in the relative abundances of features of the gut microbiome at the phylum (Firmicutes, Actinobacteria) and gene pathway levels. Among the participants with a higher relative abundance of Proteobacteria, prenatal exposure to acetaminophen and caffeine was associated with lower scores on WISC-IV subscales. Acetaminophen during bacterial colonization of the naïve gut is associated with lasting alterations in childhood microbiome composition. Future studies may inform our understanding of downstream health effects.


Gastrointestinal Microbiome , Acetaminophen/adverse effects , Bacteria/genetics , Birth Cohort , Caffeine/adverse effects , Cohort Studies , Female , Humans , Pregnancy , Prospective Studies , RNA, Ribosomal, 16S/genetics
8.
Front Pediatr ; 10: 828089, 2022.
Article En | MEDLINE | ID: mdl-35450103

Background: The small number of studies examining the association of prenatal acetaminophen with birth outcomes have all relied on maternal self-report. It remains unknown whether prenatal acetaminophen exposure measured in a biological specimen is associated with birth outcomes. Objectives: To investigate the association of acetaminophen measured in meconium with birthweight, gestational age, preterm birth, size for gestational age, gestational diabetes, preeclampsia, and high blood pressure. Methods: This birth cohort from Sherbrooke, QC, Canada, included 773 live births. Mothers with no thyroid disease enrolled at their first prenatal care visit or delivery. Acetaminophen was measured in meconium for 393 children at delivery. We tested associations of prenatal acetaminophen with birthweight, preterm birth, gestational age, small and large for gestational age, gestational diabetes, preeclampsia, and high blood pressure. We imputed missing data via multiple imputation and used inverse probability weighting to account for confounding and selection bias. Results: Acetaminophen was detected in 222 meconium samples (56.5%). Prenatal acetaminophen exposure was associated with decreased birthweight by 136 g (ß = -136; 95% CI [-229, -43]), 20% increased weekly hazard of delivery (hazard ratio = 1.20; 95% CI [1.00, 1.43]), and over 60% decreased odds of being born large for gestational age (odds ratio = 0.38; 95% CI [0.20, 0.75]). Prenatal acetaminophen was not associated with small for gestational age, preterm birth, or any pregnancy complications. Conclusion: Prenatal acetaminophen was associated with adverse birth outcomes. Although unobserved confounding and confounding by indication are possible, these results warrant further investigation into adverse perinatal effects of prenatal acetaminophen exposure.

9.
Environ Health Perspect ; 130(1): 17007, 2022 01.
Article En | MEDLINE | ID: mdl-35037767

BACKGROUND: The gut microbiome is important in modulating health in childhood. Metal exposures affect multiple health outcomes, but their ability to modify bacterial communities in children is poorly understood. OBJECTIVES: We assessed the associations of childhood and perinatal blood metal levels with childhood gut microbiome diversity, structure, species, gene family-inferred species, and potential pathway alterations. METHODS: We assessed the gut microbiome using 16S rRNA gene amplicon sequencing and shotgun metagenomic sequencing in stools collected from 6- to 7-year-old children participating in the GESTation and Environment (GESTE) cohort study. We assessed blood metal concentrations [cadmium (Cd), manganese (Mn), mercury (Hg), lead (Pb), selenium (Se)] at two time points, namely, perinatal exposures at delivery (N=70) and childhood exposures at the 6- to 7-y follow-up (N=68). We used multiple covariate-adjusted statistical models to determine microbiome associations with continuous blood metal levels, including linear regression (Shannon and Pielou alpha diversity indexes), permutational multivariate analysis of variance (adonis; beta diversity distance matrices), and multivariable association model (MaAsLin2; phylum, family, species, gene family-inferred species, and pathways). RESULTS: Children's blood Mn and Se significantly associated with microbiome phylum [e.g., Verrucomicrobiota (coef=-0.305, q=0.031; coef=0.262, q=0.084, respectively)] and children's blood Mn significantly associated with family [e.g., Eggerthellaceae (coef=-0.228, q=0.052)]-level differences. Higher relative abundance of potential pathogens (e.g., Flavonifractor plautii), beneficial species (e.g., Bifidobacterium longum, Faecalibacterium prausnitzii), and both potentially pathogenic and beneficial species (e.g., Bacteriodes vulgatus, Eubacterium rectale) inferred from gene families were associated with higher childhood or perinatal blood Cd, Hg, and Pb (q<0.1). We found significant negative associations between childhood blood Pb and acetylene degradation pathway abundance (q<0.1). Finally, neither perinatal nor childhood metal concentrations were associated with children's gut microbial inter- and intrasubject diversity. DISCUSSION: Our findings suggest both long- and short-term associations between metal exposure and the childhood gut microbiome, with stronger associations observed with more recent exposure. Future epidemiologic analyses may elucidate whether the observed changes in the microbiome relate to children's health. https://doi.org/10.1289/EHP9674.


Gastrointestinal Microbiome , Canada/epidemiology , Child , Cohort Studies , Female , Humans , Metals , Pregnancy , RNA, Ribosomal, 16S/genetics
10.
Environ Res ; 206: 112593, 2022 04 15.
Article En | MEDLINE | ID: mdl-34951987

BACKGROUND: Prenatal exposure to persistent organic pollutants (POPs), widespread in North America, is associated with increased Attention Deficit/Hyperactivity Disorder (ADHD) symptoms and may be a modifiable risk for ADHD phenotypes. However, the effects of moderate exposure to POPs on task-based inhibitory control performance, related brain function, and ADHD-related symptoms remain unknown, limiting our ability to develop interventions targeting the neural impact of common levels of exposure. OBJECTIVES: The goal of this study was to examine the association between prenatal POP exposure and inhibitory control performance, neural correlates of inhibitory control and ADHD-related symptoms. METHODS: Prospective data was gathered in an observational study of Canadian mother-child dyads, with moderate exposure to POPs, including polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), as part of the GESTation and the Environment (GESTE) cohort in Sherbrooke, Quebec, Canada. The sample included 87 eligible children, 46 with maternal plasma samples, functional magnetic resonance imaging (fMRI) data of Simon task performance at 9-11 years, and parental report of clinical symptoms via the Behavioral Assessment System for Children 3 (BASC-3). Simon task performance was probed via drift diffusion modeling, and parameter estimates were related to POP exposure. Simon task-based fMRI data was modeled to examine the difference in incongruent vs congruent trials in regions of interest (ROIs) identified by meta analysis. RESULTS: Of the 46 participants with complete data, 29 were male, and mean age was 10.42 ± 0.55 years. Increased POP exposure was associated with reduced accuracy (e.g. PCB molar sum rate ratio = 0.95; 95% CI [0.90, 0.99]), drift rate (e.g. for PCB molar sum ß = -0.42; 95% CI [-0.77, -0.07]), and task-related brain activity (e.g. in inferior frontal cortex for PCB molar sum ß = -0.35; 95% CI [-0.69, -0.02]), and increased ADHD symptoms (e.g. hyperactivity PCB molar sum ß = 2.35; 95%CI [0.17, 4.53]), supporting the possibility that prenatal exposure to POPs is a modifiable risk for ADHD phenotypes. DISCUSSION: We showed that exposure to POPs is related to task-based changes in neural activity in brain regions important for inhibitory control, suggesting a biological mechanism underlying previously documented associations between POPs and neurobehavioral deficits found in ADHD phenotypes.


Attention Deficit Disorder with Hyperactivity , Environmental Pollutants , Polychlorinated Biphenyls , Prenatal Exposure Delayed Effects , Attention Deficit Disorder with Hyperactivity/chemically induced , Attention Deficit Disorder with Hyperactivity/epidemiology , Canada/epidemiology , Female , Humans , Male , Maternal Exposure , Mother-Child Relations , Observational Studies as Topic , Persistent Organic Pollutants , Phenotype , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/epidemiology , Prospective Studies
11.
Metabolites ; 11(10)2021 Sep 28.
Article En | MEDLINE | ID: mdl-34677372

Animal studies have shown that developmental exposures to polybrominated diphenyl ethers (PBDE) permanently affect blood/liver balance of lipids. No human study has evaluated associations between in utero exposures to persistent organic pollutants (POPs) and later life lipid metabolism. In this pilot, maternal plasma levels of PBDEs (BDE-47, BDE-99, BDE-100, and BDE-153) and polychlorinated biphenyls (PCB-138, PCB-153, and PCB-180) were determined at delivery in participants of GESTation and Environment (GESTE) cohort. Total cholesterol (TCh), triglycerides (TG), low- and high-density lipoproteins (LDL-C and HDL-C), total lipids (TL), and PBDEs were determined in serum of 147 children at ages 6-7. General linear regression was used to estimate the relationship between maternal POPs and child lipid levels with adjustment for potential confounders, and adjustment for childhood POPs. In utero BDE-99 was associated with lower childhood levels of TG (p = 0.003), and non-significantly with HDL-C (p = 0.06) and TL (p = 0.07). Maternal PCB-138 was associated with lower childhood levels of TG (p = 0.04), LDL-C (p = 0.04), and TL (p = 0.02). Our data indicate that in utero exposures to POPs may be associated with long lasting decrease in circulating lipids in children, suggesting increased lipid accumulation in the liver, a mechanism involved in NAFLD development, consistent with previously reported animal data.

12.
Environ Pollut ; 285: 117476, 2021 Sep 15.
Article En | MEDLINE | ID: mdl-34082369

Halogenated flame retardants (HFRs) market is continuously evolving and have moved from the extensive use of polybrominated diphenyl ether (PBDE) to more recent introduced mixtures such as Firemaster 550, Firemaster 680, DP-25, DP-35, and DP-515. These substitutes are mainly composed of non-PBDEs HFRs such as 2-ethyl-hexyl tetrabromobenzoate (TBB), bis(2-ethylhexyl) tetrabromophthalate (TBPH), 1,2-bis-(2,4,6-tribromophenoxy) ethane (BTBPE) and decabromodiphenyl ethane (DBDPE). Other HFRs commonly being monitored include Dechlorane Plus (DP), Dechlorane 602 (Dec602), Dechlorane 603 (Dec603), Dechlorane 604 (Dec604), 5,6-dibromo-1,10, 11, 12,13,13-hexachloro- 11-tricyclo[8.2.1.02,9]tridecane (HCDBCO) and 4,5,6,7-tetrabromo-1,1,3-trimethyl-3-(2,3,4,5-tetrabromophenyl)-2,3-dihydro-1H-indene (OBTMPI). This review aims at highlighting the advances in the past decade (2010-2020) on both the analytical procedures of HFRs in human bio-specimens using gas chromatography coupled with single quadrupole mass spectrometry and synthesizing the information on the levels of these HFRs in human samples. Human specimen included in this review are blood, milk, stool/meconium, hair and nail. The review summarizes the analytical methods, including extraction and clean-up techniques, used for measuring HFRs in biological samples, which are largely adopted from those for analysing PBDEs. In addition, new challenges in the analysis to include both PBDEs and a wide range of other HFRs are also discussed in this review. Review of the levels of HFRs in human samples shows that PBDEs are still the most predominant HFRs in many cases, followed by DP. However, emerging HFRs are also being detected in human despite of the fact that both their detection frequencies and levels are lower than PBDEs and DP. It is clearly demonstrated in this review that people working in the industry or living close to the industrial areas have higher HFR levels in their bodies.


Flame Retardants , Chromatography, Gas , Environmental Monitoring , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Humans , Mass Spectrometry
13.
Environ Epidemiol ; 5(3): e156, 2021 Jun.
Article En | MEDLINE | ID: mdl-34131617

Previous studies suggest a negative association between prenatal polybrominated diphenyl ethers (PBDEs) exposure and child cognitive and psychomotor development. However, the timing of the relationship between PBDE exposure and neurodevelopment is still unclear. We examined the association between PBDE concentration at two different prenatal times (early and late pregnancy) and cognitive function in children 6-8 years of age. METHODS: Eight hundred pregnant women were recruited between 2007 and 2009 from Sherbrooke, Canada. Four PBDE congeners (BDE-47, -99, -100, and -153) were measured in maternal plasma samples collected during early pregnancy (12 weeks of gestation) and at delivery. At 6-8 years of age, 355 children completed a series of subtests spanning multiple neuropsychologic domains: verbal and memory skills were measured using the Wechsler Intelligence Scale for Children, Fourth Edition; visuospatial processing using both Wechsler Intelligence Scale for Children, Fourth Edition and Neuropsychological Assessment second edition; and attention was assessed through the Test of Everyday Attention for Children. Additionally, parents completed subtests from the Developmental Coordination Disorder Questionnaire to measure child motor control. We used linear regression and quantile g-computation models to estimate associations of PBDE congener concentrations and psychologic test scores. RESULTS: In our models, no significant associations were detected between PBDE mixture and any of the child psychologic scores. BDE-99 concentration at delivery was nominally associated with higher scores on short-term and working memory while a decrease in spatial perception and reasoning was nominally associated with higher BDE-100 concentration at delivery. CONCLUSION: Overall, our results did not show a significant association between PBDEs and child cognitive and motor development.

14.
JAMA Pediatr ; 174(11): 1073-1081, 2020 11 01.
Article En | MEDLINE | ID: mdl-32986124

Importance: Despite evidence of an association between prenatal acetaminophen exposure and attention-deficit/hyperactivity disorder (ADHD) in offspring, the drug is not contraindicated during pregnancy, possibly because prior studies have relied on maternal self-report, failed to quantify acetaminophen dose, and lacked mechanistic insight. Objective: To examine the association between prenatal acetaminophen exposure measured in meconium (hereinafter referred to as meconium acetaminophen) and ADHD in children aged 6 to 7 years, along with the potential for mediation by functional brain connectivity. Design, Setting, and Participants: This prospective birth cohort study from the Centre Hospitalier Université de Sherbrooke in Sherbrooke, Québec, Canada, included 394 eligible children, of whom 345 had meconium samples collected at delivery and information on ADHD diagnosis. Mothers were enrolled from September 25, 2007, to September 10, 2009, at their first prenatal care visit or delivery and were followed up when children were aged 6 to 7 years. When children were aged 9 to 11 years, resting-state brain connectivity was assessed with magnetic resonance imaging. Data for the present study were collected from September 25, 2007, to January 18, 2020, and analyzed from January 7, 2019, to January 22, 2020. Exposures: Acetaminophen levels measured in meconium. Main Outcomes and Measures: Physician diagnosis of ADHD was determined at follow-up when children were aged 6 to 7 years or from medical records. Resting-state brain connectivity was assessed with magnetic resonance imaging; attention problems and hyperactivity were assessed with the Behavioral Assessment System for Children Parent Report Scale. Associations between meconium acetaminophen levels and outcomes were estimated with linear and logistic regressions weighted on the inverse probability of treatment to account for potential confounders. Causal mediation analysis was used to test for mediation of the association between prenatal acetaminophen exposure and hyperactivity by resting-state brain connectivity. Results: Among the 345 children included in the analysis (177 boys [51.3%]; mean [SD] age, 6.58 [0.54] years), acetaminophen was detected in 199 meconium samples (57.7%), and ADHD was diagnosed in 33 children (9.6%). Compared with no acetaminophen, detection of acetaminophen in meconium was associated with increased odds of ADHD (odds ratio [OR], 2.43; 95% CI, 1.41-4.21). A dose-response association was detected; each doubling of exposure increased the odds of ADHD by 10% (OR, 1.10; 95% CI, 1.02-1.19). Children with acetaminophen detected in meconium showed increased negative connectivity between frontoparietal and default mode network nodes to clusters in the sensorimotor cortices, which mediated an indirect effect on increased child hyperactivity (14%; 95% CI, 1%-26%). Conclusions and Relevance: Together with the multitude of other cohort studies showing adverse neurodevelopment associated with prenatal acetaminophen exposure, this work suggests caution should be used in administering acetaminophen during pregnancy. Research into alternative pain management strategies for pregnant women could be beneficial.


Acetaminophen/adverse effects , Connectome/standards , Meconium/chemistry , Acetaminophen/administration & dosage , Attention Deficit Disorder with Hyperactivity , Child , Connectome/statistics & numerical data , Female , Follow-Up Studies , Humans , Infant, Newborn , Male , Meconium/drug effects , Pregnancy , Prenatal Exposure Delayed Effects/diagnosis , Prenatal Exposure Delayed Effects/epidemiology , Prospective Studies
15.
Environ Int ; 139: 105716, 2020 06.
Article En | MEDLINE | ID: mdl-32283359

BACKGROUND: Parabens, which are used as a preservative in foods and personal care products, are detected in nearly 100% of human urine samples. Exposure to parabens is associated with DNA damage, male infertility, and endocrine disruption in adults, but the effects of prenatal exposure are unclear. In part, this is due to inadequate assessment of exposure in maternal urine, which may only reflect maternal rather than fetal exposure. To address this gap, we examined the association of prenatal methylparaben measured in meconium with preterm birth, gestational age, birthweight, maternal thyroid hormones, and child Attention-Deficit Hyperactivity Disorder (ADHD) at 6-7 years. DESIGN: Data come from the GESTation and the Environment (GESTE) prospective observational pregnancy cohort in Sherbrooke, Quebec, Canada. Participants were 345 children with data on ADHD among 394 eligible pregnancies in women age ≥18 years with no known thyroid disease before pregnancy and meconium collected at delivery. Methylparaben was measured in meconium. Birthweight, gestational age, and maternal thyroid hormones at <20 weeks gestation were measured at the Centre Hospitalier Universitaire de Sherbrooke. Preterm birth was defined as vaginal birth before the 37th week of gestation. Physician diagnosis of ADHD was determined at a scheduled cohort follow-up when children were 6-7 years old or from medical records. Associations between meconium methylparaben and outcomes were estimated with logistic and linear regressions weighted on the inverse probability of exposure to account for potential confounders, including child sex, familial income, maternal education, pre-pregnancy body mass index, age, and smoking and alcohol consumption during pregnancy. RESULTS: Methylparaben was detected in 65 meconium samples (19%), 33 children were diagnosed with ADHD (10%), and 13 children were born preterm (4%). Meconium methylparaben was associated with preterm birth (odds ratio [OR] = 4.81; 95% CI [2.29, 10.10]), decreased gestational age (beta [ß] = -0.61 weeks; 95% CI [-0.93, -0.29]) and birthweight (ß = -0.12 kg; 95% CI [-0.21, -0.03]), altered maternal TSH (relative concentration [RC] = 0.76; 95% CI [0.58, 0.99]), total T3 (RC = 0.84; 95% CI [0.75, 0.96]) and total T4 (RC = 1.10; 95% CI [1.01, 1.19]), maternal hypothyroxinemia (OR = 2.50, 95% CI [1.01, 6.22]), and child ADHD at age of 6-7 (OR = 2.33, 95% CI [1.45, 3.76]). The effect of meconium methylparaben on ADHD was partially mediated by preterm birth (20% mediation) and birthweight (13% mediation). CONCLUSIONS: Meconium methylparaben was associated with preterm birth, decreased gestational age and birthweight, maternal thyroid hormone dysfunction, and child ADHD. Parabens are a substantial health concern if causally related to these adverse outcomes.


Attention Deficit Disorder with Hyperactivity , Parabens , Pregnancy Complications , Premature Birth , Prenatal Exposure Delayed Effects , Thyroid Diseases , Adult , Attention Deficit Disorder with Hyperactivity/epidemiology , Canada , Child , Female , Humans , Infant , Infant, Newborn , Male , Meconium , Parabens/toxicity , Pregnancy , Pregnancy Complications/epidemiology , Pregnancy Outcome , Premature Birth/epidemiology , Prenatal Exposure Delayed Effects/epidemiology , Prospective Studies , Quebec/epidemiology , Thyroid Diseases/epidemiology
16.
Environ Health ; 19(1): 31, 2020 03 11.
Article En | MEDLINE | ID: mdl-32160895

BACKGROUND: The overwhelming number of potentially toxic chemicals in consumer products and in our daily environment makes it unrealistic to carry out in-depth analyses of each product with the objective of banning and eliminating toxic chemicals from our environment. OBJECTIVES: To present the challenges that environmental toxicology and epidemiology are currently facing in the context of ubiquitous chemical pollution. DISCUSSION: We propose a realistic and pragmatic approach to this Herculean problem.


Environmental Pollutants/toxicity , Neurotoxicity Syndromes/etiology , Neurotoxins/toxicity , Risk Assessment/methods , Toxicity Tests/methods , Hazardous Substances/toxicity , Humans
17.
Environ Pollut ; 263(Pt A): 114602, 2020 Aug.
Article En | MEDLINE | ID: mdl-33618486

In previous studies, the total content of urinary phthalate metabolites was commonly used to evaluate human exposure to phthalates. However, phthalate metabolites are mainly present in urine in two forms, conjugated and free. These metabolite forms in urine are more relevant to the biotransformation pathways of the phthalates in humans. Therefore, the concentration of these forms is more relevant to exposure related health outcomes than total content. In this study, instead of measuring total content, the free- and conjugated-form concentrations of phthalate metabolites in the urine of fertile and infertile men were measured. The main metabolites in urine of both groups are monoethyl phthalate (MEP) and the di-(2-ethylhexyl) phthalate (DEHP) metabolites. The geometric means of their both conjugated- and free-forms in the infertile group were higher than in the fertile group, specifically, 24.3 and 43.4 µg/g creatinine vs 8.5 and 28.9 µg/g creatinine, respectively, for MEP, and 50.0 and 9.1 µg/g creatinine vs 39.1 and 8.4 µg/g creatinine, respectively for total DEHP metabolites. We investigated the correlations of free- and conjugated-form phthalate metabolite concentrations between the infertile and fertile group as well as among different phthalate metabolites. The results showed that there was a statistically significant difference between the infertile and fertile group for monobenzyl phthalate (MBzP) in both free-form and conjugated-form. However, there was only a statistically significant difference between the two groups for conjugated-form MEP and MEHP, and no statistically significant difference between the two groups for free-form MEP and MEHP. The results of the Pearson correlation test revealed that the correlations between DEHP metabolites and the correlations between mid-sized phthalate metabolites (mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP) and mono-benzyl phthalate (MBzP)) were stronger than between these two clusters of metabolites. This study is the first attempt to examine possible effects of conjugated-form concentrations of phthalate metabolites on human fertility. The results of this study suggest that conjugated-form and free-form concentrations of urinary phthalate metabolites may be appropriate biomarkers for assessing human exposure to phthalates and association with health outcomes.


Environmental Pollutants , Infertility , Phthalic Acids , Biomarkers , Environmental Exposure , Fertility , Humans , Male
18.
Environ Pollut ; 252(Pt B): 1035-1041, 2019 Sep.
Article En | MEDLINE | ID: mdl-31252100

Three hexachloronorbornene-based flame retardants and five polybrominated diphenyl ethers (PBDEs) were measured in 414 human plasma samples, (169 from children, 167 from mothers, and 78 from fathers), collected from 200 families between 2014 and 2016. The median concentration of ∑PBDEs (sum of BDE-47, -99, -100, -153 and -183) was 13.2 ng/g lipid for child, 9.03 ng/g lipid for mother and 12.7 ng/g lipid for father, respectively. Among the hexachloronorbornene-based flame retardants, Dec 602 was the most frequently detected chemical. Significant and positive correlations between the concentrations of PBDE congeners as well as between Dec 602 and Dec 603 were observed. Concentrations of PBDE congeners also showed significant and positive correlations in paired samples from family members (child-mother-father), while Dec 602 was the only hexachloronorbornene-based flame retardant whose concentrations correlated between family members, and only in mother-father paired samples. This is the largest study to date focusing on measuring and correlating HRFs in children and their parents living in the same household. The results convey important information on human exposure to measured HFRs, which can help researchers and regulators more clearly understand the influence of diet and the home environment.


Environmental Monitoring/methods , Flame Retardants/analysis , Halogenated Diphenyl Ethers/blood , Adult , Child , Diet , Family Characteristics , Female , Humans , Male , Nuclear Family , Quebec , Surveys and Questionnaires
19.
J Clin Endocrinol Metab ; 104(11): 5157-5169, 2019 11 01.
Article En | MEDLINE | ID: mdl-31058973

CONTEXT: Underlying mechanisms leading to gestational diabetes mellitus (GDM) are still under investigation, and it is unclear whether the placenta plays a role in triggering glucose intolerance or if its functions are modified in response to the hyperglycemia. Circulating miRNAs are involved in placental development and function and are encapsulated in extracellular vesicles (EVs). OBJECTIVE: To compare differential expression of miRNAs in circulating EVs in pregnancies complicated by GDM vs controls. METHODS: This was a case-control study nested in a prospective pregnancy cohort including 23 women with GDM and 46 matched controls. The presence of serum EVs in early pregnancy was validated by transmission electron microscopy. Placental dimensions were assessed at 11 to 13 weeks of gestation. Differential expression of 17 miRNAs encapsulated in EVs (miR‒122-5p, miR‒132-3p, miR-1323, miR‒182-3p, miR‒210-3p, miR‒29a-3p, miR‒29b-3p, miR‒342-3p, miR‒517-5p, miR‒517a-3p, miR‒518b, miR-520h, miR‒525-5p, miR‒136-5p, miR‒342-3p, miR‒376c-5p, and miR‒494-3p) was assessed using quantitative reverse transcription PCR. RESULTS: EVs were present in the early phase of placentation (6 to 15 weeks of gestation) in both cases and controls. No differences were observed for placental dimensions and estimated placental volume between GDM and control groups. Ten miRNAs (miR‒122-5p; miR‒132-3p; miR‒1323; miR‒136-5p; miR‒182-3p; miR‒210-3p; miR‒29a-3p; miR‒29b-3p; miR‒342-3p, and miR-520h) showed significantly higher levels in GDM cases than in controls (P ≤ 0.05). Bioinformatics analysis showed that these miRNAs are involved in trophoblast proliferation/differentiation as well as in insulin secretion/regulation and glucose transport in pregnant women. CONCLUSION: The miRNA content of blood EVs may be a promising avenue for studying the early effect of impaired glucose metabolism on placental development.


Circulating MicroRNA/blood , Diabetes, Gestational/blood , Extracellular Vesicles/chemistry , Adult , Blood Glucose/metabolism , Case-Control Studies , Computational Biology , Extracellular Vesicles/ultrastructure , Female , Glucose Tolerance Test , Humans , Insulin/metabolism , Placentation , Pregnancy , Prospective Studies , Trophoblasts
20.
Environ Epidemiol ; 3(1)2019 Feb.
Article En | MEDLINE | ID: mdl-30778401

BACKGROUND: The gut microbiome is influenced by early-life exposures, but-despite potentially enormous implications for child health-is understudied in environmental epidemiology. This pilot study is one of the first to explore in utero exposures and long-term gut microbiome profiles. We examined the association between exposure to polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) during pregnancy and the mid-childhood gut microbiome. METHODS: We measured levels of PBDE-47, -99, -100, and -153 and PCB-138, -153, and -180 in maternal plasma during early pregnancy (n=18) and at delivery (n=25) in women of European descent who breastfed the child participant of the Gestation and Environment cohort in Sherbrooke, Québec (recruited 2007-2009). Bacteria in the mid-childhood (6-8 years) fecal microbiome were detected with 16S rRNA sequencing. To test for differences at the taxon level, we used the Microbiome Comprehensive Association Mapping algorithm. RESULTS: Early pregnancy PCB-153, -180, and the sum of PCBs (Σ3PCB) concentrations were associated with a higher relative abundance of Propionibacteriales and Propionibacteriaceae in mid-childhood. Higher PCB-180 and Σ3PCB were associated with higher relative abundance of Bacillales Family XI. Higher PBDE-99 exposure was associated with a decrease in uncultured bacteria within the Ruminococcaceae NK4A214 group and PBDE-47 was associated with differences in Ruminococcus 2. These taxon-level changes did not result in differences in within- or between-subject diversity. Exposures at delivery were not associated with differences in taxa. CONCLUSIONS: Prenatal exposure to PCBs and PBDEs is associated with mid-childhood gut microbiome profiles. Larger studies are needed to confirm these results and explore health implications.

...