Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(29): e2400545, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38773714

RESUMEN

Standard single-cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single-cell physiology. Here, a scPatch-Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) genetic mutation and compares them to isogenic wild-type controls. This approach provides both current and voltage electrophysiological data plus detailed proteomics information on single-cells. With this new method, the authors are able to observe hyperelectrical activity in the AD hiPSC-neurons, similar to that observed in the human AD brain, and correlate it to ≈1400 proteins detected at the single neuron level. Using linear regression and mediation analyses to explore the relationship between the abundance of individual proteins and the neuron's mutational and electrophysiological status, this approach yields new information on therapeutic targets in excitatory neurons not attainable by traditional methods. This combined patch-proteomics technique creates a new proteogenetic-therapeutic strategy to correlate genotypic alterations to physiology with protein expression in single-cells.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Neuronas , Técnicas de Placa-Clamp , Proteómica , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteómica/métodos , Neuronas/metabolismo , Técnicas de Placa-Clamp/métodos , Análisis de la Célula Individual/métodos
3.
Nat Chem Biol ; 19(3): 275-283, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36175661

RESUMEN

Prevention of infection and propagation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a high priority in the Coronavirus Disease 2019 (COVID-19) pandemic. Here we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin-converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 spike protein, thereby inhibiting viral entry, infectivity and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and, thus, the spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model and, thus, provide a novel avenue to pursue therapy.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Unión Proteica , Peptidil-Dipeptidasa A/metabolismo
4.
bioRxiv ; 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35411336

RESUMEN

Prevention of infection and propagation of SARS-CoV-2 is of high priority in the COVID-19 pandemic. Here, we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 Spike protein, thereby inhibiting viral entry, infectivity, and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and thus spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E-protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model, and thus provide a novel avenue for therapy.

5.
J Neurosci ; 41(10): 2264-2273, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33483428

RESUMEN

Synaptic and neuronal loss are major neuropathological characteristics of Parkinson's disease. Misfolded protein aggregates in the form of Lewy bodies, comprised mainly of α-synuclein (αSyn), are associated with disease progression, and have also been linked to other neurodegenerative diseases, including Lewy body dementia, Alzheimer's disease, and frontotemporal dementia. However, the effects of αSyn and its mechanism of synaptic damage remain incompletely understood. Here, we show that αSyn oligomers induce Ca2+-dependent release of glutamate from astrocytes obtained from male and female mice, and that mice overexpressing αSyn manifest increased tonic release of glutamate in vivo In turn, this extracellular glutamate activates glutamate receptors, including extrasynaptic NMDARs (eNMDARs), on neurons both in culture and in hippocampal slices of αSyn-overexpressing mice. Additionally, in patch-clamp recording from outside-out patches, we found that oligomerized αSyn can directly activate eNMDARs. In organotypic slices, oligomeric αSyn induces eNMDAR-mediated synaptic loss, which can be reversed by the drug NitroSynapsin. When we expose human induced pluripotent stem cell-derived cerebrocortical neurons to αSyn, we find similar effects. Importantly, the improved NMDAR antagonist NitroSynapsin, which selectively inhibits extrasynaptic over physiological synaptic NMDAR activity, protects synapses from oligomeric αSyn-induced damage in our model systems, thus meriting further study for its therapeutic potential.SIGNIFICANCE STATEMENT Loss of synaptic function and ensuing neuronal loss are associated with disease progression in Parkinson's disease (PD), Lewy body dementia (LBD), and other neurodegenerative diseases. However, the mechanism of synaptic damage remains incompletely understood. α-Synuclein (αSyn) misfolds in PD/LBD, forming Lewy bodies and contributing to disease pathogenesis. Here, we found that misfolded/oligomeric αSyn releases excessive astrocytic glutamate, in turn activating neuronal extrasynaptic NMDA receptors (eNMDARs), thereby contributing to synaptic damage. Additionally, αSyn oligomers directly activate eNMDARs, further contributing to damage. While the FDA-approved drug memantine has been reported to offer some benefit in PD/LBD (Hershey and Coleman-Jackson, 2019), we find that the improved eNMDAR antagonist NitroSynapsin ameliorates αSyn-induced synaptic spine loss, providing potential disease-modifying intervention in PD/LBD.


Asunto(s)
Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , alfa-Sinucleína/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Células Cultivadas , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Sinapsis/metabolismo , Sinapsis/patología , alfa-Sinucleína/farmacología
6.
Mol Psychiatry ; 26(10): 5751-5765, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32467645

RESUMEN

Beginning at early stages, human Alzheimer's disease (AD) brains manifest hyperexcitability, contributing to subsequent extensive synapse loss, which has been linked to cognitive dysfunction. No current therapy for AD is disease-modifying. Part of the problem with AD drug discovery is that transgenic mouse models have been poor predictors of potential human treatment. While it is undoubtedly important to test drugs in these animal models, additional evidence for drug efficacy in a human context might improve our chances of success. Accordingly, in order to test drugs in a human context, we have developed a platform of physiological assays using patch-clamp electrophysiology, calcium imaging, and multielectrode array (MEA) experiments on human (h)iPSC-derived 2D cortical neuronal cultures and 3D cerebral organoids. We compare hiPSCs bearing familial AD mutations vs. their wild-type (WT) isogenic controls in order to characterize the aberrant electrical activity in such a human context. Here, we show that these AD neuronal cultures and organoids manifest increased spontaneous action potentials, slow oscillatory events (~1 Hz), and hypersynchronous network activity. Importantly, the dual-allosteric NMDAR antagonist NitroSynapsin, but not the FDA-approved drug memantine, abrogated this hyperactivity. We propose a novel model of synaptic plasticity in which aberrant neural networks are rebalanced by NitroSynapsin. We propose that hiPSC models may be useful for screening drugs to treat hyperexcitability and related synaptic damage in AD.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Potenciales de Acción , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Animales , Modelos Animales de Enfermedad , Ratones , Redes Neurales de la Computación , Neuronas
7.
Annu Rev Pharmacol Toxicol ; 61: 701-721, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-32997602

RESUMEN

Excitatory/inhibitory (E/I) balance, defined as the balance between excitation and inhibition of synaptic activity in a neuronal network, accounts in part for the normal functioning of the brain, controlling, for example, normal spike rate. In many pathological conditions, this fine balance is perturbed, leading to excessive or diminished excitation relative to inhibition, termed E/I imbalance, reflected in network dysfunction. E/I imbalance has emerged as a contributor to neurological disorders that occur particularly at the extremes of life, including autism spectrum disorder and Alzheimer's disease, pointing to the vulnerability of neuronal networks at these critical life stages. Hence, it is important to develop approaches to rebalance neural networks. In this review, we describe emerging therapies that can normalize the E/I ratio or the underlying abnormality that contributes to the imbalance in electrical activity, thus improving neurological function in these maladies.


Asunto(s)
Trastorno del Espectro Autista , Enfermedades Neurodegenerativas , Encéfalo , Humanos , Neuronas
8.
Elife ; 82019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31782729

RESUMEN

Human Alzheimer's disease (AD) brains and transgenic AD mouse models manifest hyperexcitability. This aberrant electrical activity is caused by synaptic dysfunction that represents the major pathophysiological correlate of cognitive decline. However, the underlying mechanism for this excessive excitability remains incompletely understood. To investigate the basis for the hyperactivity, we performed electrophysiological and immunofluorescence studies on hiPSC-derived cerebrocortical neuronal cultures and cerebral organoids bearing AD-related mutations in presenilin-1 or amyloid precursor protein vs. isogenic gene corrected controls. In the AD hiPSC-derived neurons/organoids, we found increased excitatory bursting activity, which could be explained in part by a decrease in neurite length. AD hiPSC-derived neurons also displayed increased sodium current density and increased excitatory and decreased inhibitory synaptic activity. Our findings establish hiPSC-derived AD neuronal cultures and organoids as a relevant model of early AD pathophysiology and provide mechanistic insight into the observed hyperexcitability.


Asunto(s)
Potenciales de Acción , Enfermedad de Alzheimer/fisiopatología , Cerebro/citología , Excitabilidad Cortical , Fenómenos Electrofisiológicos , Células Madre Pluripotentes Inducidas/fisiología , Neuronas/fisiología , Precursor de Proteína beta-Amiloide/genética , Animales , Tamaño de la Célula , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Modelos Teóricos , Proteínas Mutantes/genética , Organoides , Presenilina-1/genética
9.
Stem Cell Reports ; 7(3): 527-542, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27569059

RESUMEN

Controlled differentiation of human embryonic stem cells (hESCs) can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs). This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites) provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families), phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt.


Asunto(s)
Diferenciación Celular , Neuronas/metabolismo , Fosfoproteínas/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteoma , Proteómica , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Biología Computacional/métodos , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neuronas/citología , Proteómica/métodos , Transducción de Señal , Transcriptoma
11.
Sci Rep ; 5: 14781, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26477507

RESUMEN

Stroke and vascular dementia are leading causes of morbidity and mortality. Neuroprotective therapies have been proposed but none have proven clinically tolerated and effective. While overstimulation of N-methyl-d-aspartate-type glutamate receptors (NMDARs) is thought to contribute to cerebrovascular insults, the importance of NMDARs in physiological function has made this target, at least in the view of many in 'Big Pharma,' 'undruggable' for this indication. Here, we describe novel NitroMemantine drugs, comprising an adamantane moiety that binds in the NMDAR-associated ion channel that is used to target a nitro group to redox-mediated regulatory sites on the receptor. The NitroMemantines are both well tolerated and effective against cerebral infarction in rodent models via a dual allosteric mechanism of open-channel block and NO/redox modulation of the receptor. Targeted S-nitrosylation of NMDARs by NitroMemantine is potentiated by hypoxia and thereby directed at ischemic neurons. Allosteric approaches to tune NMDAR activity may hold therapeutic potential for cerebrovascular disorders.


Asunto(s)
Trastornos Cerebrovasculares/metabolismo , Memantina/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Anuros , Apoptosis/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Trastornos Cerebrovasculares/tratamiento farmacológico , Trastornos Cerebrovasculares/patología , Potenciación a Largo Plazo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Memantina/análogos & derivados , Memantina/uso terapéutico , Potenciales de la Membrana/efectos de los fármacos , Óxido Nítrico/metabolismo , Oxidación-Reducción/efectos de los fármacos , Ratas , Transmisión Sináptica/efectos de los fármacos
12.
Cell Res ; 24(1): 126-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24296783
13.
Cell ; 155(6): 1351-64, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24290359

RESUMEN

Parkinson's disease (PD) is characterized by loss of A9 dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). An association has been reported between PD and exposure to mitochondrial toxins, including environmental pesticides paraquat, maneb, and rotenone. Here, using a robust, patient-derived stem cell model of PD allowing comparison of A53T α-synuclein (α-syn) mutant cells and isogenic mutation-corrected controls, we identify mitochondrial toxin-induced perturbations in A53T α-syn A9 DA neurons (hNs). We report a pathway whereby basal and toxin-induced nitrosative/oxidative stress results in S-nitrosylation of transcription factor MEF2C in A53T hNs compared to corrected controls. This redox reaction inhibits the MEF2C-PGC1α transcriptional network, contributing to mitochondrial dysfunction and apoptotic cell death. Our data provide mechanistic insight into gene-environmental interaction (GxE) in the pathogenesis of PD. Furthermore, using small-molecule high-throughput screening, we identify the MEF2C-PGC1α pathway as a therapeutic target to combat PD.


Asunto(s)
Interacción Gen-Ambiente , Mitocondrias/efectos de los fármacos , Paraquat/toxicidad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción MEF2 , Mutación/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Especies de Nitrógeno Reactivo/metabolismo , Sustancia Negra/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
Proc Natl Acad Sci U S A ; 110(27): E2518-27, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23776240

RESUMEN

Synaptic loss is the cardinal feature linking neuropathology to cognitive decline in Alzheimer's disease (AD). However, the mechanism of synaptic damage remains incompletely understood. Here, using FRET-based glutamate sensor imaging, we show that amyloid-ß peptide (Aß) engages α7 nicotinic acetylcholine receptors to induce release of astrocytic glutamate, which in turn activates extrasynaptic NMDA receptors (eNMDARs) on neurons. In hippocampal autapses, this eNMDAR activity is followed by reduction in evoked and miniature excitatory postsynaptic currents (mEPSCs). Decreased mEPSC frequency may reflect early synaptic injury because of concurrent eNMDAR-mediated NO production, tau phosphorylation, and caspase-3 activation, each of which is implicated in spine loss. In hippocampal slices, oligomeric Aß induces eNMDAR-mediated synaptic depression. In AD-transgenic mice compared with wild type, whole-cell recordings revealed excessive tonic eNMDAR activity accompanied by eNMDAR-sensitive loss of mEPSCs. Importantly, the improved NMDAR antagonist NitroMemantine, which selectively inhibits extrasynaptic over physiological synaptic NMDAR activity, protects synapses from Aß-induced damage both in vitro and in vivo.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Inhibición Neural/fisiología , Fragmentos de Péptidos/toxicidad , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Astrocitos/patología , Técnicas de Cocultivo , Femenino , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Ratones , Ratones Transgénicos , Ratas , Receptores Nicotínicos/metabolismo , Sinapsis/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7
15.
J Neurosci ; 32(45): 15837-42, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23136422

RESUMEN

After transplantation, individual stem cell-derived neurons can functionally integrate into the host CNS; however, evidence that neurons derived from transplanted human embryonic stem cells (hESCs) can drive endogenous neuronal network activity in CNS tissue is still lacking. Here, using multielectrode array recordings, we report activation of high-frequency oscillations in the ß and γ ranges (10-100 Hz) in the host hippocampal network via targeted optogenetic stimulation of transplanted hESC-derived neurons.


Asunto(s)
Células Madre Embrionarias/trasplante , Hipocampo/fisiología , Células-Madre Neurales/trasplante , Neuronas/trasplante , Potenciales de Acción/fisiología , Animales , Células Madre Embrionarias/citología , Femenino , Hipocampo/citología , Humanos , Masculino , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuronas/citología , Optogenética , Ratas , Ratas Sprague-Dawley
16.
PLoS One ; 6(8): e24027, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21901155

RESUMEN

Human embryonic stem cells (hESCs) can potentially differentiate into any cell type, including dopaminergic neurons to treat Parkinson's disease (PD), but hyperproliferation and tumor formation must be avoided. Accordingly, we use myocyte enhancer factor 2C (MEF2C) as a neurogenic and anti-apoptotic transcription factor to generate neurons from hESC-derived neural stem/progenitor cells (NPCs), thus avoiding hyperproliferation. Here, we report that forced expression of constitutively active MEF2C (MEF2CA) generates significantly greater numbers of neurons with dopaminergic properties in vitro. Conversely, RNAi knockdown of MEF2C in NPCs decreases neuronal differentiation and dendritic length. When we inject MEF2CA-programmed NPCs into 6-hydroxydopamine-lesioned parkinsonian rats in vivo, the transplanted cells survive well, differentiate into tyrosine hydroxylase-positive neurons, and improve behavioral deficits to a significantly greater degree than non-programmed cells. The enriched generation of dopaminergic neuronal lineages from hESCs by forced expression of MEF2CA in the proper context may prove valuable in cell-based therapy for CNS disorders such as PD.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas de Dominio MADS/metabolismo , Factores Reguladores Miogénicos/metabolismo , Neurogénesis/fisiología , Animales , Diferenciación Celular/genética , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Electrofisiología , Células Madre Embrionarias/trasplante , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Proteínas de Dominio MADS/genética , Factores de Transcripción MEF2 , Factores Reguladores Miogénicos/genética , Neurogénesis/genética , Oxidopamina , Enfermedad de Parkinson/terapia , Reacción en Cadena de la Polimerasa , Interferencia de ARN/fisiología , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Cell Stem Cell ; 9(2): 113-8, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21802386

RESUMEN

Human induced pluripotent stem cells (hiPSCs) have been generated by reprogramming a number of different somatic cell types using a variety of approaches. In addition, direct reprogramming of mature cells from one lineage to another has emerged recently as an alternative strategy for generating cell types of interest. Here we show that a combination of a microRNA (miR-124) and two transcription factors (MYT1L and BRN2) is sufficient to directly reprogram postnatal and adult human primary dermal fibroblasts (mesoderm) to functional neurons (ectoderm) under precisely defined conditions. These human induced neurons (hiNs) exhibit typical neuronal morphology and marker gene expression, fire action potentials, and produce functional synapses between each other. Our findings have major implications for cell-replacement strategies in neurodegenerative diseases, disease modeling, and neural developmental studies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Reprogramación Celular/genética , Medios de Cultivo/farmacología , Fibroblastos/citología , Fibroblastos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Adulto , Diferenciación Celular/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Dermis/citología , Fibroblastos/efectos de los fármacos , Humanos , Recién Nacido , Neuronas/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
18.
Proc Natl Acad Sci U S A ; 108(20): 8299-304, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21525408

RESUMEN

Human embryonic stem cells (hESCs) hold enormous promise for regenerative medicine. Typically, hESC-based applications would require their in vitro differentiation into a desirable homogenous cell population. A major challenge of the current hESC differentiation paradigm is the inability to effectively capture and, in the long-term, stably expand primitive lineage-specific stem/precursor cells that retain broad differentiation potential and, more importantly, developmental stage-specific differentiation propensity. Here, we report synergistic inhibition of glycogen synthase kinase 3 (GSK3), transforming growth factor ß (TGF-ß), and Notch signaling pathways by small molecules can efficiently convert monolayer cultured hESCs into homogenous primitive neuroepithelium within 1 wk under chemically defined condition. These primitive neuroepithelia can stably self-renew in the presence of leukemia inhibitory factor, GSK3 inhibitor (CHIR99021), and TGF-ß receptor inhibitor (SB431542); retain high neurogenic potential and responsiveness to instructive neural patterning cues toward midbrain and hindbrain neuronal subtypes; and exhibit in vivo integration. Our work uniformly captures and maintains primitive neural stem cells from hESCs.


Asunto(s)
Células Madre Embrionarias/citología , Células-Madre Neurales/citología , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Humanos , Receptores Notch/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/antagonistas & inhibidores
19.
Proc Natl Acad Sci U S A ; 108(19): 7838-43, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21521790

RESUMEN

The simple yet powerful technique of induced pluripotency may eventually supply a wide range of differentiated cells for cell therapy and drug development. However, making the appropriate cells via induced pluripotent stem cells (iPSCs) requires reprogramming of somatic cells and subsequent redifferentiation. Given how arduous and lengthy this process can be, we sought to determine whether it might be possible to convert somatic cells into lineage-specific stem/progenitor cells of another germ layer in one step, bypassing the intermediate pluripotent stage. Here we show that transient induction of the four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) can efficiently transdifferentiate fibroblasts into functional neural stem/progenitor cells (NPCs) with appropriate signaling inputs. Compared with induced neurons (or iN cells, which are directly converted from fibroblasts), transdifferentiated NPCs have the distinct advantage of being expandable in vitro and retaining the ability to give rise to multiple neuronal subtypes and glial cells. Our results provide a unique paradigm for iPSC-factor-based reprogramming by demonstrating that it can be readily modified to serve as a general platform for transdifferentiation.


Asunto(s)
Transdiferenciación Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Linaje de la Célula , Proliferación Celular , Medios de Cultivo , Técnicas Citológicas , Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/biosíntesis , Ratones , Modelos Biológicos , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Factor 3 de Transcripción de Unión a Octámeros/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Factores de Transcripción SOXB1/biosíntesis , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
20.
J Neurosci ; 30(34): 11501-5, 2010 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-20739572

RESUMEN

NMDA receptors are typically excited by a combination of glutamate and glycine. Here we describe excitatory responses in CNS myelin that are gated by a glycine agonist alone and mediated by NR1/NR3 "NMDA" receptor subunits. Response properties include activation by d-serine, inhibition by the glycine-site antagonist CNQX, and insensitivity to the glutamate-site antagonist d-APV. d-Serine responses were abrogated in NR3A-deficient mice. Our results suggest the presence of functional NR1/NR3 receptors in CNS myelin.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Glicina/fisiología , Vaina de Mielina/fisiología , Subunidades de Proteína/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Línea Celular , Sistema Nervioso Central/fisiología , Humanos , Ratones , Ratones Noqueados , Subunidades de Proteína/agonistas , Subunidades de Proteína/genética , Ratas , Ratas Long-Evans , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA