Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(3): 1770-1776, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38168970

RESUMEN

Using a reactive molecular beam with high kinetic energy (Ekin), it is possible to speed gas-surface reactions involving high activation barriers (Eact), which would require elevated pressures (P0) if a random gas with a Maxwell-Boltzmann distribution is used. By simply computing the number of molecules that overcome the activation barrier in a random gas at P0 and in a molecular beam at Ekin = Eact, we establish an Ekin-P0 equivalence curve, through which we postulate that molecular beams are ideal tools to investigate gas-surface reactions that involve high activation energies. In particular, we foresee the use of molecular beams to simulate gas surface reactions within the industrial-range (>10 bar) using surface-sensitive ultra-high vacuum (UHV) techniques, such as X-ray photoemission spectroscopy (XPS). To test this idea, we revisit the oxidation of the Cu(111) surface combining O2 molecular beams and XPS experiments. By tuning the kinetic energy of the O2 beam in the range of 0.24-1 eV, we achieve the same sequence of surface oxides obtained in ambient pressure photoemission (AP-XPS) experiments, in which the Cu(111) surface was exposed to a random O2 gas up to 1 mbar. We observe the same surface oxidation kinetics as in the random gas, but with a much lower dose, close to the expected value derived from the equivalence curve.

2.
Phys Chem Chem Phys ; 24(21): 13229-13233, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35603893

RESUMEN

The knowledge of the thermal expansion coefficient is of crucial importance to prevent the poor performance of devices, especially when these are made up of several layers of different materials, as in the case of 2D heterostructures. Helium atom scattering is a suitable tool for the direct measurement of the surface thermal expansion coefficient of materials. This information can be obtained directly from the position of the helium diffraction peaks, which allows determining the surface lattice constant at different temperatures by merely applying Bragg's law. We present new data for PdTe2 which confirm a trend observed for several 2D dichalcogenides, namely, that the in-plane lattice constant remains unchanged (within experimental error) in the temperature range of interest for applications, which enables setting an upper limit for the lateral thermal expansion coefficients of these materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...