Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 20(11): e3001838, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36318534

RESUMEN

Host-associated microbiotas guide the trajectory of developmental programs, and altered microbiota composition is linked to neurodevelopmental conditions such as autism spectrum disorder. Recent work suggests that microbiotas modulate behavioral phenotypes associated with these disorders. We discovered that the zebrafish microbiota is required for normal social behavior and reveal a molecular pathway linking the microbiota, microglial remodeling of neural circuits, and social behavior in this experimentally tractable model vertebrate. Examining neuronal correlates of behavior, we found that the microbiota restrains neurite complexity and targeting of forebrain neurons required for normal social behavior and is necessary for localization of forebrain microglia, brain-resident phagocytes that remodel neuronal arbors. The microbiota also influences microglial molecular functions, including promoting expression of the complement signaling pathway and the synaptic remodeling factor c1q. Several distinct bacterial taxa are individually sufficient for normal microglial and neuronal phenotypes, suggesting that host neuroimmune development is sensitive to a feature common among many bacteria. Our results demonstrate that the microbiota influences zebrafish social behavior by stimulating microglial remodeling of forebrain circuits during early neurodevelopment and suggest pathways for new interventions in multiple neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista , Microbiota , Animales , Microglía/metabolismo , Pez Cebra , Trastorno del Espectro Autista/metabolismo , Neuronas/fisiología , Conducta Social , Prosencéfalo
2.
BMC Genomics ; 23(1): 675, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175871

RESUMEN

BACKGROUND: An essential determinant of a neuron's functionality is its neurotransmitter phenotype. We previously identified a defined subpopulation of cholinergic neurons required for social orienting behavior in zebrafish. RESULTS: We transcriptionally profiled these neurons and discovered that they are capable of synthesizing both acetylcholine and GABA. We also established a constellation of transcription factors and neurotransmitter markers that can be used as a "transcriptomic fingerprint" to recognize a homologous neuronal population in another vertebrate. CONCLUSION: Our results suggest that this transcriptomic fingerprint and the cholinergic-GABAergic neuronal subtype that it defines are evolutionarily conserved.


Asunto(s)
Acetilcolina , Pez Cebra , Animales , Colinérgicos , Neuronas Colinérgicas , Neurotransmisores , Conducta Social , Factores de Transcripción , Pez Cebra/genética , Ácido gamma-Aminobutírico
3.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35346959

RESUMEN

Finding the link between behaviors and their regulatory molecular pathways is a major obstacle in treating neuropsychiatric disorders. The immediate early gene (IEG) EGR1 is implicated in the etiology of neuropsychiatric disorders, and is linked to gene pathways associated with social behavior. Despite extensive knowledge of EGR1 gene regulation at the molecular level, it remains unclear how EGR1 deficits might affect the social component of these disorders. Here, we examined the social behavior of zebrafish with a mutation in the homologous gene egr1 Mutant fish exhibited reduced social approach and orienting, whereas other sensorimotor behaviors were unaffected. On a molecular level, expression of the dopaminergic biosynthetic enzyme, tyrosine hydroxylase (TH), was strongly decreased in TH-positive neurons of the anterior parvocellular preoptic nucleus. These neurons are connected with basal forebrain (BF) neurons associated with social behavior. Chemogenetic ablation of around 30% of TH-positive neurons in this preoptic region reduced social attraction to a similar extent as the egr1 mutation. These results demonstrate the requirement of Egr1 and dopamine signaling during social interactions, and identify novel circuitry underlying this behavior.


Asunto(s)
Dopamina , Proteína 1 de la Respuesta de Crecimiento Precoz , Conducta Social , Pez Cebra , Animales , Dopamina/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Prosencéfalo/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Pez Cebra/metabolismo
4.
J Comp Neurol ; 529(9): 2176-2188, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33491202

RESUMEN

As they form, synapses go through various stages of maturation and refinement. These steps are linked to significant changes in synaptic function, potentially resulting in emergence and maturation of behavioral outputs. Synaptotagmins are calcium-sensing proteins of the synaptic vesicle exocytosis machinery, and changes in Synaptotagmin proteins at synapses have significant effects on vesicle release and synaptic function. Here, we examined the distribution of the synaptic vesicle protein Synaptotagmin 2a (Syt2a) during development of the zebrafish nervous system. Syt2a is widely distributed throughout the midbrain and hindbrain early during larval development but very weakly expressed in the forebrain. Later in development, Syt2a expression levels in the forebrain increase, particularly in regions associated with social behavior, and most intriguingly, around the time social behavior becomes apparent. We provide evidence that Syt2a localizes to synapses onto neurons implicated in social behavior in the ventral forebrain and show that Syt2a is colocalized with tyrosine hydroxylase, a biosynthetic enzyme in the dopamine pathway. Our results suggest a developmentally important role for Syt2a in maturing synapses in the forebrain, coinciding with the emergence of social behavior.


Asunto(s)
Prosencéfalo/metabolismo , Conducta Social , Sinapsis/metabolismo , Sinaptotagmina II/biosíntesis , Animales , Animales Modificados Genéticamente , Expresión Génica , Prosencéfalo/embriología , Sinapsis/genética , Sinaptotagmina II/genética , Pez Cebra
5.
Curr Biol ; 28(15): 2445-2451.e3, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30057306

RESUMEN

Deficits in social engagement are diagnostic of multiple neurodevelopmental disorders, including autism and schizophrenia [1]. Genetically tractable animal models like zebrafish (Danio rerio) could provide valuable insight into developmental factors underlying these social impairments, but this approach is predicated on the ability to accurately and reliably quantify subtle behavioral changes. Similarly, characterizing local molecular and morphological phenotypes requires knowledge of the neuroanatomical correlates of social behavior. We leveraged behavioral and genetic tools in zebrafish to both refine our understanding of social behavior and identify brain regions important for driving it. We characterized visual social interactions between pairs of adult zebrafish and discovered that they perform a stereotyped orienting behavior that reflects social attention [2]. Furthermore, in pairs of fish, the orienting behavior of one individual is the primary factor driving the same behavior in the other individual. We used manual and genetic lesions to investigate the forebrain contribution to this behavior and identified a population of neurons in the ventral telencephalon whose ablation suppresses social interactions, while sparing other locomotor and visual behaviors. These neurons are cholinergic and express the gene encoding the transcription factor Lhx8a, which is required for development of cholinergic neurons in the mouse forebrain [3]. The neuronal population identified in zebrafish lies in a region homologous to mammalian forebrain regions implicated in social behavior such as the lateral septum [4]. Our data suggest that an evolutionarily conserved population of neurons controls social orienting in zebrafish.


Asunto(s)
Neuronas/fisiología , Orientación Espacial/fisiología , Conducta Social , Telencéfalo/fisiología , Pez Cebra/fisiología , Animales , Femenino , Masculino
6.
BMC Genomics ; 16: 1100, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26699284

RESUMEN

BACKGROUND: Understanding the mechanisms by which neurons are generated and specified, and how they integrate into functional circuits is key to being able to treat disorders of the nervous system and acute brain trauma. Much of what we know about neuronal differentiation has been studied in developing embryos, but differentiation steps may be very different during adult neurogenesis. For this reason, we compared the transcriptomes of newly differentiated neurons in zebrafish embryos and adults. RESULTS: Using a 4tU RNA labeling method, we isolated and sequenced mRNA specifically from cells of one day old embryos and adults expressing the transgene HA-uprt-mcherry under control of the neuronal marker elavl3. By categorizing transcript products into different protein classes, we identified similarities and differences of gene usage between adult and embryonic neuronal differentiation. We found that neurons in the adult brain and in the nervous system of one day old embryos commonly use transcription factors - some of them identical - during the differentiation process. When we directly compared adult differentiating neurons to embryonic differentiating neurons, however, we found that during adult neuronal differentiation, the expression of neuropeptides and neurotransmitter pathway genes is more common, whereas classical developmental signaling through secreted molecules like Hedgehog or Wnt are less enriched, as compared to embryonic stages. CONCLUSIONS: We conclude that both adult and embryonic differentiating neurons show enriched use of transcription factors compared to surrounding cells. However, adult and embryonic developing neurons use alternative pathways to differentiate. Our study provides evidence that adult neuronal differentiation is distinct from the better characterized embryonic neuronal differentiation process. This important insight and the lists of enriched genes we have identified will now help pave the way to a better understanding of the mechanisms of embryonic and adult neuronal differentiation and how to manipulate these processes.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Neurogénesis , Neuronas/citología , Pez Cebra/embriología , Pez Cebra/genética , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Neuropéptidos/genética , Análisis de Secuencia de ARN/métodos , Transducción de Señal , Factores de Transcripción/genética
7.
Curr Genomics ; 15(4): 278-92, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25132798

RESUMEN

Identifying gene function in specific cells is critical for understanding the processes that make cells unique. Several different methods are available to isolate actively transcribed RNA or actively translated RNA in specific cells at a chosen time point. Cell-specific mRNA isolation can be accomplished by the expression of transgenes in cells of interest, either directly from a specific promoter or using a modular system such as Gal4/UAS or Cre/lox. All of the methods described in this review, namely thiol-labeling of RNA (TU-tagging or RABT), TRAP (translating ribosome affinity purification) and INTACT (isolation of nuclei tagged in specific cell types), allow next generation sequencing, permitting the identification of enriched gene transcripts within the specific cell-type. We describe here the general concept of each method, include examples, evaluate possible problems related to each technique, and suggest the types of questions for which each method is best suited.

8.
Development ; 139(9): 1691-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22492359

RESUMEN

To understand the molecular mechanisms of development it is essential to be able to turn genes on and off at will and in a spatially restricted fashion. Morpholino oligonucleotides (MOs) are very common tools used in several model organisms with which it is possible to block gene expression. Recently developed photo-activated MOs allow control over the onset of MO activity. However, deactivation of photo-cleavable MO activity has remained elusive. Here, we describe photo-cleavable MOs with which it is possible to activate or de-activate MO function by UV exposure in a temporal and spatial manner. We show, using several different genes as examples, that it is possible to turn gene expression on or off both in the entire zebrafish embryo and in single cells. We use these tools to demonstrate the sufficiency of no tail expression as late as tailbud stage to drive medial precursor cells towards the notochord cell fate. As a broader approach for the use of photo-cleavable MOs, we show temporal control over gal4 function, which has many potential applications in multiple transgenic lines. We demonstrate temporal manipulation of Gal4 transgene expression in only primary motoneurons and not secondary motoneurons, heretofore impossible with conventional transgenic approaches. In another example, we follow and analyze neural crest cells that regained sox10 function after deactivation of a photo-cleavable sox10-MO at different time points. Our results suggest that sox10 function might not be critical during neural crest formation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Morfolinos/efectos de la radiación , Factores de Transcripción SOXE/metabolismo , Rayos Ultravioleta , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Diferenciación Celular/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Proteínas Fetales , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Morfolinos/genética , Morfolinos/metabolismo , Neuronas Motoras/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Notocorda/citología , Notocorda/embriología , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/genética
9.
Dis Model Mech ; 4(6): 786-800, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21757509

RESUMEN

Usher syndrome is the most prevalent cause of hereditary deaf-blindness, characterized by congenital sensorineural hearing impairment and progressive photoreceptor degeneration beginning in childhood or adolescence. Diagnosis and management of this disease are complex, and the molecular changes underlying sensory cell impairment remain poorly understood. Here we characterize two zebrafish models for a severe form of Usher syndrome, Usher syndrome type 1C (USH1C): one model is a mutant with a newly identified ush1c nonsense mutation, and the other is a morpholino knockdown of ush1c. Both have defects in hearing, balance and visual function from the first week of life. Histological analyses reveal specific defects in sensory cell structure that are consistent with these behavioral phenotypes and could implicate Müller glia in the retinal pathology of Usher syndrome. This study shows that visual defects associated with loss of ush1c function in zebrafish can be detected from the onset of vision, and thus could be applicable to early diagnosis for USH1C patients.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Sinapsis/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Audición/efectos de los fármacos , Larva/efectos de los fármacos , Sistema de la Línea Lateral/efectos de los fármacos , Sistema de la Línea Lateral/metabolismo , Sistema de la Línea Lateral/fisiopatología , Estadios del Ciclo de Vida/efectos de los fármacos , Datos de Secuencia Molecular , Morfolinos/farmacología , Mutación/genética , Proteínas del Tejido Nervioso/genética , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/patología , Células Fotorreceptoras de Vertebrados/ultraestructura , Transporte de Proteínas/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/patología , Sinapsis/ultraestructura , Visión Ocular/efectos de los fármacos , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
Eur J Neurosci ; 32(2): 198-206, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20646051

RESUMEN

Synapses are the primary means for transmitting information from one neuron to the next. They are formed during the development of the nervous system, and the formation of appropriate synapses is crucial for the establishment of neuronal circuits that underlie behavior and cognition. Understanding how synapses form and are maintained will allow us to address developmental disorders such as autism, mental retardation and possibly also psychological disorders. A number of biochemical and proteomic studies have revealed a diverse and vast assortment of molecules that are present at the synapse. It is now important to untangle this large array of proteins and determine how it assembles into a functioning unit. Here we focus on recent reports describing how synaptic cell adhesion molecules interact with and organize the presynaptic and postsynaptic specializations of both excitatory and inhibitory central synapses.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura , Animales , Humanos
11.
Dev Dyn ; 239(2): 703-14, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20063411

RESUMEN

The establishment and maturation of appropriate synaptic connections is crucial in the development of neuronal circuits. Cellular adhesion is believed to play a central role in this process. Neuroligins are neuronal cell adhesion molecules that are hypothesized to act in the initial formation and maturation of synaptic connections. In order to establish the zebrafish as a model to investigate the in vivo role of Neuroligin proteins in nervous system development, we identified the zebrafish orthologs of neuroligin family members and characterized their expression. Zebrafish possess seven neuroligin genes. Synteny analysis and sequence comparisons show that NLGN2, NLGN3, and NLGN4X are duplicated in zebrafish, but NLGN1 has a single zebrafish ortholog. All seven zebrafish neuroligins are expressed in complex patterns in the developing nervous system and in the adult brain. The spatial and temporal expression patterns of these genes suggest that they occupy a role in nervous system development and maintenance.


Asunto(s)
Desarrollo Embrionario , Familia de Multigenes , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/metabolismo , Pez Cebra/metabolismo , Animales , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/embriología , Neuronas/metabolismo , Médula Espinal/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
12.
Dev Dyn ; 238(12): 3226-36, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19924821

RESUMEN

Physical interaction between the transmembrane proteins Delta and Notch allows only a subset of neural precursors to become neurons, as well as regulating other aspects of neural development. To examine the localization of Delta protein during neural development, we generated an antibody specific to zebrafish Delta A (Dla). Here, we describe for the first time the subcellular localization of Dla protein in distinct puncta at cell cortex and/or membrane, supporting the function of Dla in direct cell-cell communication. In situ RNA hybridization and immunohistochemistry revealed dynamic, coordinated expression patterns of dla mRNA and Dla protein in the developing and adult zebrafish nervous system. Dla expression is mostly excluded from differentiated neurons and is maintained in putative precursor cells at least until larval stages. In the adult brain, dla mRNA and Dla protein are expressed in proliferative zones normally associated with stem cells.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Sistema Nervioso/metabolismo , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Proliferación Celular , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Modelos Biológicos , Sistema Nervioso/embriología , Neuronas/metabolismo , ARN Mensajero/metabolismo , Células Madre/metabolismo , Distribución Tisular , Pez Cebra/embriología , Pez Cebra/metabolismo
13.
Neural Dev ; 3: 18, 2008 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-18664287

RESUMEN

BACKGROUND: Expression of correct neurotransmitters is crucial for normal nervous system function. How neurotransmitter expression is regulated is not well-understood; however, previous studies provide evidence that both environmental signals and intrinsic differentiation programs are involved. One environmental signal known to regulate neurotransmitter expression in vertebrate motoneurons is Hepatocyte growth factor, which acts through the Met receptor tyrosine kinase and also affects other aspects of motoneuron differentiation, including axonal extension. Here we test the role of Met in development of motoneurons in embryonic zebrafish. RESULTS: We found that met is expressed in all early developing, individually identified primary motoneurons and in at least some later developing secondary motoneurons. We used morpholino antisense oligonucleotides to knock down Met function and found that Met has distinct roles in primary and secondary motoneurons. Most secondary motoneurons were absent from met morpholino-injected embryos, suggesting that Met is required for their formation. We used chemical inhibitors to test several downstream pathways activated by Met and found that secondary motoneuron development may depend on the p38 and/or Akt pathways. In contrast, primary motoneurons were present in met morpholino-injected embryos. However, a significant fraction of them had truncated axons. Surprisingly, some CaPs in met morpholino antisense oligonucleotide (MO)-injected embryos developed a hybrid morphology in which they had both a peripheral axon innervating muscle and an interneuron-like axon within the spinal cord. In addition, in met MO-injected embryos primary motoneurons co-expressed mRNA encoding Choline acetyltransferase, the synthetic enzyme for their normal neurotransmitter, acetylcholine, and mRNA encoding Glutamate decarboxylase 1, the synthetic enzyme for GABA, a neurotransmitter never normally found in these motoneurons, but found in several types of interneurons. Our inhibitor studies suggest that Met function in primary motoneurons may be mediated through the MEK1/2 pathway. CONCLUSION: We provide evidence that Met is necessary for normal development of zebrafish primary and secondary motoneurons. Despite their many similarities, our results show that these two motoneuron subtypes have different requirements for Met function during development, and raise the possibility that Met may act through different intracellular signaling cascades in primary and secondary motoneurons. Surprisingly, although met is not expressed in primary motoneurons until many hours after they have extended axons to and innervated their muscle targets, Met knockdown causes some of these cells to develop a hybrid phenotype in which they co-expressed motoneuron and interneuron neurotransmitters and have both peripheral and central axons.


Asunto(s)
Neuronas Motoras/fisiología , Neurotransmisores/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Médula Espinal , Pez Cebra/embriología , Animales , Conducta Animal/fisiología , Diferenciación Celular/fisiología , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Regulación hacia Abajo/fisiología , Regulación del Desarrollo de la Expresión Génica , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Interneuronas/fisiología , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Oligonucleótidos Antisentido , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/fisiología , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/fisiología , Tacto/fisiología , Pez Cebra/genética , Ácido gamma-Aminobutírico/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Gene Expr Patterns ; 6(5): 546-55, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16455309

RESUMEN

Retinoic acid signaling is important for patterning the central nervous system, paired appendages, digestive tract, and other organs. To begin to investigate retinoic acid signaling in zebrafish, we determined orthologies between zebrafish and tetrapod retinoic acid receptors (Rars) and examined the expression patterns of rar genes during embryonic development. Analysis of phylogenies and conserved syntenies showed that the three cloned zebrafish rar genes include raraa and rarab, which are co-orthologs of tetrapod Rara, and rarg, which is the zebrafish ortholog of tetrapod Rarg. We did not, however, find an ortholog of Rarb. RNA in situ hybridization experiments showed that rarab and rarg, are maternally expressed. Zygotic expression of raraa occurs predominantly in the hindbrain, lateral mesoderm, and tailbud. Zygotic expression of rarab largely overlaps that of raraa, except that in later stages rarab is expressed more broadly in the brain and in the pectoral fin bud and pharyngeal arches. Zygotic expression of zebrafish rarg also overlaps the other two genes, but it is expressed more strongly in the posterior hindbrain beginning in late somitogenesis as well as in neural crest cells in the pharyngeal arches. Thus, these three genes have largely overlapping expression patterns and a few gene-specific expression domains. Knowledge of these expression patterns will guide the interpretation of the roles these genes play in development.


Asunto(s)
Receptores de Ácido Retinoico/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Secuencia de Bases , Cartilla de ADN , Femenino , Hibridación in Situ , Filogenia
15.
Gene Expr Patterns ; 6(5): 556-65, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16448862

RESUMEN

During development of vertebrate embryos, retinoic acid plays a variety of roles that are mediated by binding to retinoic acid receptors (Rars) and their heterodimerization partners, the retinoid receptors (Rxrs). Here, we characterize the expression patterns of four zebrafish rxr genes during development and provide an analysis of the phylogenetic relationships between zebrafish and tetrapod Rxr genes based on sequence similarities and conserved syntenies. This analysis prompted the renaming of several of the zebrafish rxr genes to match their tetrapod orthologs. Understanding phylogenetic relationships among Rxr genes and their expression patterns during development provides a foundation for future studies of Rxr functions.


Asunto(s)
Receptores X Retinoide/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Femenino , Perfilación de la Expresión Génica , Hibridación in Situ , Filogenia
16.
Development ; 132(16): 3731-42, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16077092

RESUMEN

Cranial sensory neurons largely derive from neurogenic placodes (epibranchial and dorsolateral), which are ectodermal thickenings that form the sensory ganglia associated with cranial nerves, but the molecular mechanisms of placodal development are unclear. Here, we show that the pharyngeal endoderm induces epibranchial neurogenesis in zebrafish, and that BMP signaling plays a crucial role in this process. Using a her5:egfp transgenic line to follow endodermal movements in living embryos, we show that contact between pharyngeal pouches and the surface ectoderm coincides with the onset of neurogenesis in epibranchial placodes. By genetic ablation and reintroduction of endoderm by cell transplantation, we show that these contacts promote neurogenesis. Using a genetic interference approach we further identify bmp2b and bmp5 as crucial components of the endodermal signals that induce epibranchial neurogenesis. Dorsolateral placodes (trigeminal, auditory, vestibular, lateral line) develop independently of the endoderm and BMP signaling, suggesting that these two sets of placodes are under separate genetic control. Our results show that the endoderm regulates the differentiation of cranial sensory ganglia, which coordinates the cranial nerves with the segments that they innervate.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Endodermo/fisiología , Morfogénesis , Neuronas Aferentes/fisiología , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Animales , Animales Modificados Genéticamente , Biomarcadores , Tipificación del Cuerpo , Proteína Morfogenética Ósea 2 , Proteína Morfogenética Ósea 5 , Proteínas Morfogenéticas Óseas/genética , Estructuras Embrionarias/anatomía & histología , Estructuras Embrionarias/fisiología , Ganglios/citología , Ganglios/metabolismo , Hibridación in Situ , Neuronas Aferentes/citología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
17.
Development ; 132(18): 4193-204, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16107477

RESUMEN

Defects in cardiac valve morphogenesis and septation of the heart chambers constitute some of the most common human congenital abnormalities. Some of these defects originate from errors in atrioventricular (AV) endocardial cushion development. Although this process is being extensively studied in mouse and chick, the zebrafish system presents several advantages over these models, including the ability to carry out forward genetic screens and study vertebrate gene function at the single cell level. In this paper, we analyze the cellular and subcellular architecture of the zebrafish heart during stages of AV cushion and valve development and gain an unprecedented level of resolution into this process. We find that endocardial cells in the AV canal differentiate morphologically before the onset of epithelial to mesenchymal transformation, thereby defining a previously unappreciated step during AV valve formation. We use a combination of novel transgenic lines and fluorescent immunohistochemistry to analyze further the role of various genetic (Notch and Calcineurin signaling) and epigenetic (heart function) pathways in this process. In addition, from a large-scale forward genetic screen we identified 55 mutants, defining 48 different genes, that exhibit defects in discrete stages of AV cushion development. This collection of mutants provides a unique set of tools to further our understanding of the genetic basis of cell behavior and differentiation during AV valve development.


Asunto(s)
Diferenciación Celular/fisiología , Endocardio/embriología , Válvulas Cardíacas/embriología , Morfogénesis/fisiología , Transducción de Señal/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Calcineurina/metabolismo , Diferenciación Celular/genética , Análisis Mutacional de ADN , Endocardio/citología , Fluorescencia , Inmunohistoquímica , Microscopía Confocal , Receptores Notch/metabolismo
18.
Development ; 132(1): 75-88, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15590746

RESUMEN

The intervening zone (IZ) is a pool of progenitor cells located at the midbrain-hindbrain boundary (MHB) and important for MHB maintenance, midbrain-hindbrain growth and the generation of midbrain-hindbrain neurons. Recently, we implicated the Hairy/E(spl) transcription factor Her5 in the formation of the medial (most basal) part of the IZ (MIZ) in zebrafish; the molecular bases for lateral IZ (LIZ) formation, however, remain unknown. We now demonstrate that her5 is physically linked to a new family member, him, displaying an identical MHB expression pattern. Using single and double knockdowns of him and her5, as well as a him+her5 deletion mutant background (b404), we demonstrate that Him and Her5 are equally necessary for MIZ formation, and that they act redundantly in LIZ formation in vivo. We show that these processes do not involve cross-regulation between Him and Her5 expression or activities, although Him and Her5 can heterodimerize with high affinity. Increasing the function of one factor when the other is depleted further shows that Him and Her5 are functionally interchangeable. Together, our results demonstrate that patterning and neurogenesis are integrated by the her5-him gene pair to maintain a progenitor pool at the embryonic MHB. We propose a molecular mechanism for this process where the global 'Him+Her5' activity inhibits ngn1 expression in a dose-dependent manner and through different sensitivity thresholds along the medio-lateral axis of the neural plate.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Mesencéfalo/embriología , Proteínas del Tejido Nervioso/fisiología , Neuronas/patología , Rombencéfalo/embriología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Western Blotting , Tipificación del Cuerpo , Clonación Molecular , Cartilla de ADN/química , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Datos de Secuencia Molecular , Neuronas/metabolismo , Neuronas/fisiología , Filogenia , Unión Proteica , ARN/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/biosíntesis , Transgenes , Técnicas del Sistema de Dos Híbridos , Pez Cebra , Proteínas de Pez Cebra/biosíntesis
19.
Development ; 130(18): 4307-23, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12900448

RESUMEN

The midbrain-hindbrain domain (MH) of the vertebrate embryonic neural tube develops in response to the isthmic organizer (IsO), located at the midbrain-hindbrain boundary (MHB). MH derivatives are largely missing in mutants affected in IsO activity; however, the potentialities and fate of MH precursors in these conditions have not been directly determined. To follow the dynamics of MH maintenance in vivo, we used artificial chromosome transgenesis in zebrafish to construct lines where egfp transcription is driven by the complete set of regulatory elements of her5, the first known gene expressed in the MH area. In these lines, egfp transcription faithfully recapitulates her5 expression from its induction phase onwards. Using the stability of GFP protein as lineage tracer, we first demonstrate that her5 expression at gastrulation is a selective marker of MH precursor fate. By comparing GFP protein and her5 transcription, we further reveal the spatiotemporal dynamics of her5 expression that conditions neurogenesis progression towards the MHB over time. Finally, we trace the molecular identity of GFP-positive cells in the acerebellar (ace) and no-isthmus (noi) mutant backgrounds to analyze directly fgf8 and pax2.1 mutant gene activities for their ultimate effect on cell fate. We demonstrate that most MH precursors are maintained in both mutants but express abnormal identities, in a manner that strikingly differs between the ace and noi contexts. Our observations directly support a role for Fgf8 in protecting anterior tectal and metencephalic precursors from acquiring anterior identities, while Pax2.1 controls the choice of MH identity as a whole. Together, our results suggest a model where an ordered MH pro-domain is identified at gastrulation, and where cell identity choices within this domain are subsequently differentially controlled by Fgf8 and Pax2.1 functions.


Asunto(s)
Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Mesencéfalo/embriología , Rombencéfalo/embriología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Tipificación del Cuerpo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factor 8 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Organizadores Embrionarios , Factor de Transcripción PAX2 , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Transcripción Genética , Pez Cebra/anatomía & histología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
20.
Dev Dyn ; 227(4): 524-35, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12889061

RESUMEN

Within the vertebrate embryonic neural plate, the first neuronal clusters often differentiate at the border of patterning identities. Whether the information inherent in the intersection of patterning identities alone controls all aspects of neuronal cluster development (location, identity, and size) is unknown. Here, we focus on the cluster of the medial longitudinal fascicle (nMLF) and posterior commissure (nPC), located at the forebrain/midbrain (fore/mid) boundary, to address this issue. We first identify expression of the transcription factor Six3 as a common and distinct molecular signature of nMLF and nPC neurons in zebrafish, and we use this marker to monitor mechanisms controlling the location and number of nMLF/nPC neurons. We demonstrate that six3 expression is induced at the fore/mid boundary in pax2.1/no-isthmus and smoothened/slow muscle omitted mutants, where identities adjacent to the six3 cluster are altered; however, in these mutants, the subpopulation of six3-positive cells located within the mispatterned territory is reduced. These results show that induction of the six3 cluster is triggered by the information derived from the intersection in patterning identities alone, whereas correct cluster size depends, in a modular manner, on the identities themselves. The size of the six3 cluster is also controlled independently of neural tube patterning: we demonstrate that the prechordal plate (PCP) is impaired in mixer/bonnie and clyde mutants and that this phenotype secondarily results in an increased production of six3-positive cells at the fore/mid boundary, without correlatively affecting patterning in this area. Thus, a signaling process originating from the PCP distinguishes between neural patterning and the control of six3 cluster size at the fore/mid junction in vivo. Together, our results suggest that a combination of patterning-related and -unrelated mechanisms specifically controls the size of individual early neuronal clusters within the anterior neural plate.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Mesencéfalo/embriología , Neuronas , Prosencéfalo/embriología , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Pez Cebra/embriología , Animales , Recuento de Células , Proteínas del Ojo , Proteínas de Homeodominio/genética , Inmunohistoquímica , Hibridación in Situ , Microinyecciones , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , ARN Mensajero/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Proteína Homeobox SIX3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA