Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
mSystems ; : e0141523, 2024 May 31.
Article En | MEDLINE | ID: mdl-38819130

Wastewater surveillance has emerged as a crucial public health tool for population-level pathogen surveillance. Supported by funding from the American Rescue Plan Act of 2021, the FDA's genomic epidemiology program, GenomeTrakr, was leveraged to sequence SARS-CoV-2 from wastewater sites across the United States. This initiative required the evaluation, optimization, development, and publication of new methods and analytical tools spanning sample collection through variant analyses. Version-controlled protocols for each step of the process were developed and published on protocols.io. A custom data analysis tool and a publicly accessible dashboard were built to facilitate real-time visualization of the collected data, focusing on the relative abundance of SARS-CoV-2 variants and sub-lineages across different samples and sites throughout the project. From September 2021 through June 2023, a total of 3,389 wastewater samples were collected, with 2,517 undergoing sequencing and submission to NCBI under the umbrella BioProject, PRJNA757291. Sequence data were released with explicit quality control (QC) tags on all sequence records, communicating our confidence in the quality of data. Variant analysis revealed wide circulation of Delta in the fall of 2021 and captured the sweep of Omicron and subsequent diversification of this lineage through the end of the sampling period. This project successfully achieved two important goals for the FDA's GenomeTrakr program: first, contributing timely genomic data for the SARS-CoV-2 pandemic response, and second, establishing both capacity and best practices for culture-independent, population-level environmental surveillance for other pathogens of interest to the FDA. IMPORTANCE: This paper serves two primary objectives. First, it summarizes the genomic and contextual data collected during a Covid-19 pandemic response project, which utilized the FDA's laboratory network, traditionally employed for sequencing foodborne pathogens, for sequencing SARS-CoV-2 from wastewater samples. Second, it outlines best practices for gathering and organizing population-level next generation sequencing (NGS) data collected for culture-free, surveillance of pathogens sourced from environmental samples.

2.
Microbiol Spectr ; 12(5): e0004724, 2024 May 02.
Article En | MEDLINE | ID: mdl-38546218

Surface waters are considered ecological habitats where Salmonella enterica can persist and disseminate to fresh produce production systems. This study aimed to explore the genomic profiles of S. enterica serotypes Typhimurium, Newport, and Infantis from surface waters in Chile, Mexico, and Brazil collected between 2019 and 2022. We analyzed the whole genomes of 106 S. Typhimurium, 161 S. Newport, and 113 S. Infantis isolates. Our phylogenetic analysis exhibited distinct groupings of isolates by their respective countries except for a notable case involving a Chilean S. Newport isolate closely related to two Mexican isolates, showing 4 and 13 single nucleotide polymorphisms of difference, respectively. The patterns of the most frequently detected antimicrobial resistance genes varied across countries and serotypes. A strong correlation existed between integron carriage and genotypic multidrug resistance (MDR) across serotypes in Chile and Mexico (R > 0.90, P < 0.01), while integron(s) were not detected in any of the Brazilian isolates. By contrast, we did not identify any strong correlation between plasmid carriage and genotypic MDR across diverse countries and serotypes.IMPORTANCEUnveiling the genomic landscape of S. enterica in Latin American surface waters is pivotal for ensuring public health. This investigation sheds light on the intricate genomic diversity of S. enterica in surface waters across Chile, Mexico, and Brazil. Our research also addresses critical knowledge gaps, pioneering a comprehensive understanding of surface waters as a reservoir for multidrug-resistant S. enterica. By integrating our understanding of integron carriage as biomarkers into broader MDR control strategies, we can also work toward targeted interventions that mitigate the emergence and dissemination of MDR in S. enterica in surface waters. Given its potential implications for food safety, this study emphasizes the critical need for informed policies and collaborative initiatives to address the risks associated with S. enterica in surface waters.


Drug Resistance, Multiple, Bacterial , Phylogeny , Salmonella enterica , Salmonella typhimurium , Serogroup , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/classification , Salmonella enterica/drug effects , Brazil , Drug Resistance, Multiple, Bacterial/genetics , Mexico , Salmonella typhimurium/genetics , Salmonella typhimurium/isolation & purification , Salmonella typhimurium/drug effects , Salmonella typhimurium/classification , Integrons/genetics , Genome, Bacterial , Chile , Genomics , Anti-Bacterial Agents/pharmacology , Latin America , Water Microbiology , Polymorphism, Single Nucleotide , Plasmids/genetics , Microbial Sensitivity Tests
3.
Microbiol Resour Announc ; 13(2): e0085423, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38179913

We present the closed genome sequence of the Clostridium botulinum BT-22100019 strain isolated from the stool specimen of an infant diagnosed with botulism. With 4.33-Mb genome size and 28.0% G + C content, the bont/B1 gene encoded for botulinum neurotoxin serotype B was found on a 262 kb plasmid arranged in a ha+ orfx - cluster.

4.
Front Microbiol ; 14: 1221668, 2023.
Article En | MEDLINE | ID: mdl-37720160

Culture-independent metagenomic sequencing of enriched agricultural water could expedite the detection and virulotyping of Shiga toxin-producing Escherichia coli (STEC). We previously determined the limits of a complete, closed metagenome-assembled genome (MAG) assembly and of a complete, fragmented MAG assembly for O157:H7 in enriched agricultural water using long reads (Oxford Nanopore Technologies, Oxford), which were 107 and 105 CFU/ml, respectively. However, the nanopore assemblies did not have enough accuracy to be used in Single Nucleotide Polymorphism (SNP) phylogenies and cannot be used for the precise identification of an outbreak STEC strain. The present study aimed to determine the limits of detection and assembly for STECs in enriched agricultural water by Illumina MiSeq sequencing technology alone, followed by establishing the limit of hybrid assembly with nanopore long-read sequencing using three different hybrid assemblers (SPAdes, Unicycler, and OPERA-MS). We also aimed to generate a genome with enough accuracy to be used in a SNP phylogeny. The classification of MiSeq and nanopore sequencing identified the same highly abundant species. Using the totality of the MiSeq output and a precision metagenomics approach in which the E. coli reads are binned before assembly, the limit of detection and assembly of STECs by MiSeq were determined to be 105 and 107 CFU/ml, respectively. While a complete, closed MAG could not be generated at any concentration, a complete, fragmented MAG was produced using the SPAdes assembler with an STEC concentration of at least 107 CFU/ml. At this concentration, hybrid assembled contigs aligned to the nanopore-assembled genome could be accurately placed in a neighbor-joining tree. The MiSeq limit of detection and assembly was less sensitive than nanopore sequencing, which was likely due to factors including the small starting material (50 vs. 1 µg) and the dilution of the library loaded on the cartridge. This pilot study demonstrates that MiSeq sequencing requires higher coverage in precision metagenomic samples; however, with sufficient concentration, STECs can be characterized and phylogeny can be accurately determined.

5.
Sci Rep ; 13(1): 4477, 2023 03 18.
Article En | MEDLINE | ID: mdl-36934171

Reference methods for microbiological safety assessments of cosmetics rely on culture methods that reveal colonies of live microorganisms on growth media. Rapid molecular technologies, such as qPCR, detects the presence of target DNA in samples from dead and viable cells. DNA intercalating dyes, such as propidium monoazide (PMAxx), are capable of restricting PCR amplification to viable microbial cells. Here we developed singleplex and multiplex real time (qPCR) assays for the detection of Bacillus cereus (B. cereus) using 16S rRNA and phosphatidylcholine-specific phospholipase C (PLC) gene specific sequences coupled with PMAxx. The limit of detection was determined to be ~ 1 log CFU/ml for 16S rRNA and 3 log CFU/ml for PLC detection in pure culture using an eye shadow isolate, B. cereus 3A. We assessed the inclusivity and exclusivity of our qPCR assays using 212 strains, including 143 members of B. cereus, 38 non- B. cereus. and 31 non-Bacillus species; inclusivity was 100% for the 16S rRNA and 97.9% for the PLC targets; the exclusivity was 100% for 16S rRNA and 98.6% for PLC targets. These qPCR assays were then used to assess samples of commercial cosmetics: one set of liquid face toners (N = 3), artificially contaminated with B. cereus 3A, and one set of powdered cosmetics (N = 8), previously determined to be contaminated with B. cereus. For some samples, test portions were analyzed by qPCR in parallel, with and without PMAxx treatment. All test portions were simultaneously streaked on BACARA plates to confirm viable cells of B. cereus, according to the culture method. We found no difference in sensitivity between the singleplex and the multiplex qPCR assays (P > 0.05). Inoculated samples that did not recover B. cereus on plates still showed amplification of the DNA targets. However, that amplification was significantly delayed in PMAxx -treated samples (P < 0.0001) with CT value differences of 7.82 for 16S rRNA and 7.22 for PLC. Likewise, amplification delay was significant (P < 0.0001) with inoculated samples that recovered B. cereus on plates with CT value differences of 2.96 and 2.36 for 16S rRNA and PLC, respectively, demonstrating the presence of dead cells in the samples. All our qPCR results correlated with detection on BACARA plates (kappa, k = 0.99), independently of the presence of PMAxx in the PCR assays. Nevertheless, the amplification threshold with PMAxx dyes was significantly higher than the non-PMAxx dyes. Our findings confirm qPCR can be used for more rapid detection of microorganisms in cosmetics, including B. cereus, and selective detection of viable cells can be improved using PMAxx dyes.


Bacillus , Cosmetics , Bacillus/genetics , Bacillus cereus , RNA, Ribosomal, 16S/genetics , Coloring Agents , Real-Time Polymerase Chain Reaction/methods , Food Microbiology
6.
BMC Microbiol ; 22(1): 240, 2022 10 05.
Article En | MEDLINE | ID: mdl-36199032

BACKGROUND: The Bacillus cereus group, also known as B. cereus sensu lato (s.l.) contains ubiquitous spore-forming bacteria found in the environment including strains from the B. cereus sensu stricto (s.s.) species. They occur naturally in a wide range of raw materials and in consumer products. Characterizing isolates that have survived in consumer products allows us to better understand the mechanisms that permit spores to persist and potentially cause illness. Here we characterize the draft genome sequence of B. cereus s. s. 3A-ES, originally isolated from eye shadow and since investigated in several cosmetic studies and compared it to other top ten published complete genome sequences of B. cereus s.l. members. RESULTS: The draft genome sequence of B. cereus s.s. 3A ES consisted of an average of 90 contigs comprising approximately 5,335,727 bp and a GC content of 34,988%, and with 5509 predicted coding sequences. Based on the annotation statistics and comparison to other genomes within the same species archived in the Pathosystems Resource Integration Center (PATRIC), this genome "was of good quality. Annotation of B. cereus s.s. 3A ES revealed a variety of subsystem features, virulence factors and antibiotic resistant genes. The phylogenetic analysis of ten B. cereus group members showed B. cereus s.s. 3A-ES to be a closely related homolog of B. cereus s.s. ATCC 14,579, an established reference strain that is not adapted for cosmetic microbiological studies. Survival of 3A-ES in eye shadow could be linked to predicted stress-response genes and strengthened by additional stress-response genes such as VanB-type, VanRB, CAT15/16, BcrA, BcrB, Lsa(B), and recA that are lacking in B. cereus s.s. ATCC 14,579. CONCLUSION: Our genomic analysis of B. cereus s.s. 3A-ES revealed genes, which may allow this bacterium to withstand the action of preservatives and inhibitors in cosmetics, as well as virulence factors that could contribute to its pathogenicity. Having a well-characterized strain obtained from eye-shadow may be useful for establishing a reference strain for cosmetics testing.


Bacillus cereus , Genomics , Anti-Bacterial Agents/pharmacology , Phylogeny , Virulence Factors/genetics
7.
J Food Prot ; 85(5): 755-772, 2022 05 01.
Article En | MEDLINE | ID: mdl-35259246

ABSTRACT: This multiagency report developed by the Interagency Collaboration for Genomics for Food and Feed Safety provides an overview of the use of and transition to whole genome sequencing (WGS) technology for detection and characterization of pathogens transmitted commonly by food and for identification of their sources. We describe foodborne pathogen analysis, investigation, and harmonization efforts among the following federal agencies: National Institutes of Health; Department of Health and Human Services, Centers for Disease Control and Prevention (CDC) and U.S. Food and Drug Administration (FDA); and the U.S. Department of Agriculture, Food Safety and Inspection Service, Agricultural Research Service, and Animal and Plant Health Inspection Service. We describe single nucleotide polymorphism, core-genome, and whole genome multilocus sequence typing data analysis methods as used in the PulseNet (CDC) and GenomeTrakr (FDA) networks, underscoring the complementary nature of the results for linking genetically related foodborne pathogens during outbreak investigations while allowing flexibility to meet the specific needs of Interagency Collaboration partners. We highlight how we apply WGS to pathogen characterization (virulence and antimicrobial resistance profiles) and source attribution efforts and increase transparency by making the sequences and other data publicly available through the National Center for Biotechnology Information. We also highlight the impact of current trends in the use of culture-independent diagnostic tests for human diagnostic testing on analytical approaches related to food safety and what is next for the use of WGS in the area of food safety.


Foodborne Diseases , Animals , Disease Outbreaks/prevention & control , Food Safety , Foodborne Diseases/epidemiology , Foodborne Diseases/prevention & control , Genomics , United States , Whole Genome Sequencing
8.
Front Microbiol ; 12: 687625, 2021.
Article En | MEDLINE | ID: mdl-34349741

Biofilms are a frequent cause of food contamination of potentially pathogenic bacteria, such as Staphylococcus aureus. Given its vast role in human disease, the possible impact of biofilm-producing S. aureus isolates in a food processing environment is evident. Sixty-nine S. aureus isolates collected from one firm following multiple staphylococcal food poisoning outbreak investigations were utilized for this analysis. Strain evaluations were performed to establish virulence determinants and the evolutionary relationships using data generated by shotgun whole-genome sequencing (WGS), along with end point polymerase chain reaction (PCR) and in vitro phenotypic assessments. S. aureus isolates were grouped into six well-supported clades in the phylogenetic tree, with the relationships within the clades indicating a strong degree of clonal structure. Our analysis identified four major sequence types 47.8% ST1, 31.9% ST45, 7.2% ST5, and 7.2% ST30 and two major spa types 47.8% t127 and 29.0% t3783. Extrapolated staphylococcal enterotoxin (SE) analysis found that all isolates were positive for at least 1 of the 23 SEs and/or SE-like toxin genes. Enterotoxigenic assessments found that 93% of the isolates expressed a classical SE(A-E). SE gene concurrence was observed at 96.2%, based on PCR and WGS results. In total, 46 gene targets were distinguished. This included genes that encode for adhesion and biofilm synthesis such as clfA, clfB, bbp, ebpS, ica, bap and agr. Our evaluation found agr group III to be the most prevalent at 55%, followed by 35% for agr group I. All isolates harbored the complete intercellular adhesion operon that is recognized to contain genes responsible for the adhesion step of biofilm formation by encoding proteins involved in the syntheses of the biofilm matrix. Phenotypic characterization of biofilm formation was evaluated three times, with each test completed in triplicate and accomplished utilizing the microtiter plate method and Congo red agar (CRA). The microtiter plate results indicated moderate to high biofilm formation for 96% of the isolates, with 4% exhibiting weak to no biofilm development. CRA results yielded all positive to intermediate results. The potential to inadvertently transfer pathogenic bacteria from the environment into food products creates challenges to any firm and may result in adulterated food.

9.
Microbiol Resour Announc ; 10(10)2021 Mar 11.
Article En | MEDLINE | ID: mdl-33707328

Staphylococcus aureus bacteria are ranked among the top five foodborne pathogens in the United States. Here, we report the draft genome sequences of 62 S. aureus isolates that originated from the manufacturing environment of an Illinois bakery and were associated with outbreaks between 2010 and 2011 in the United States.

10.
J AOAC Int ; 103(4): 1129-1139, 2020 Jul 01.
Article En | MEDLINE | ID: mdl-33241354

BACKGROUND: The U.S. Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) reference culture method uses Modified Letheen Broth (MLB) for microbiological analyses for all types of cosmetic products. OBJECTIVE: This study evaluated the effectiveness of MLB and Tryptone Azolectin Tween (TAT) broths using BAM reference culture method for cosmetics. METHODS: Pure spore suspensions of B. cereus group members were experimentally spiked (McF: 0.5) into cosmetic products. After an aging period of 72 h, the products were analyzed using MLB and TAT broth. The enumeration of the cells was performed on B. cereus group selective plates Bacillus cereus rapid agar (BACARA) and Mannitol Yolk Polymyxin (MYP) plates. RESULTS: No statistical difference (p > 0.05) was found for the recovery of cells from the liquid products using either medium (MLB or TAT broth) and the selective plates. In solid/powder products, a combination of Tween 80 and MLB detected significantly more cells (p < 0.05) than combination of Tween 80 and TAT broth. The microbial counts on BACARA showed no significant differences (p > 0.05). However, when assessing cream/oil-based products, the number of cells detected by use of Tween 80/TAT broth was significantly higher than Tween 80/MLB, and MYP showed significantly higher counts than BACARA. CONCLUSIONS: This study showed that relative effectiveness of MLB vs. TAT for recovering of B. cereus group cells varied depending on the variety of formulation, and combination of preservatives of the tested cosmetic products. The findings suggest additional studies are needed to explore recovery of other relevant microorganisms that may contaminate cream/oil-based cosmetics.


Bacillus , Cosmetics , Agar , Bacillus cereus , Colony Count, Microbial , Food Microbiology
11.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Article En | MEDLINE | ID: mdl-32354971

Foodborne pathogens have been implicated in illnesses worldwide. Here, we report the complete closed genome sequences of 28 bacterial strains belonging to 18 different species. These genomes belong to known foodborne pathogens. The genomes were closed by a combination of long-read and short-read sequencing.

12.
Foodborne Pathog Dis ; 17(2): 126-136, 2020 02.
Article En | MEDLINE | ID: mdl-31702400

Every year salmonellosis is responsible for $2.3 billion in costs to the U.S. food industry, with nearly 6% of the reported cases associated with pork and/or pork products. Several studies have demonstrated the role of pigs as Salmonella reservoirs. Furthermore, this pathogen has been identified as a potential biological hazard in many livestock feeds. The overall objective of this research was to characterize Salmonella enterica isolates in selected U.S. swine feed mills by whole-genome sequencing (WGS) and evaluate isolates in association with the season and feed production stages. Salmonella isolates were collected from 11 facilities during a previous study. Samples were analyzed for Salmonella prevalence following the U.S. Department of Agriculture guidelines and confirmed by PCR. WGS was carried out on either the MiSeq or NextSeq sequencer. De novo genome assemblies were obtained with the Shovill pipeline, version 0.9. ResFinder and SPIFinder were used to identify antibiotic resistance genes and pathogenicity islands. Finally, their phylogenetic relationship and diversity were determined by core genome multilocus sequence typing. Overall, our analysis showed the presence of S. enterica in the feed mill environment. Isolates belonged to 16 different serotypes. Salmonella Agona, Salmonella Mbandaka, Salmonella Senfenberg, and Salmonella Scharzengrund were the most frequently found, and 18 single-nucleotide polymorphism clusters were identified. In silico analysis showed that 40% of the strains carried at least one antimicrobial resistance gene. All isolates in this study could be considered of public health concern and pathogenic potential. Our findings underscore the potential role of the feed mill environment as the pathogen entry route into the human food value chain.


Animal Feed/microbiology , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Swine/microbiology , Animals , Drug Resistance, Multiple, Bacterial/genetics , Food Microbiology , Genome, Bacterial , Phylogeny , Prevalence , Serogroup , Whole Genome Sequencing
13.
Microbiol Resour Announc ; 8(49)2019 Dec 05.
Article En | MEDLINE | ID: mdl-31806740

Salmonella enterica is a major global foodborne pathogen that causes gastroenteritis and, in some cases, death. Salmonella serovar Anatum has been increasingly associated with foodborne salmonellosis outbreaks. In this report, we announce two complete genome sequences of Salmonella Anatum isolated from papaya fruit.

14.
J AOAC Int ; 102(4): 1080-1090, 2019 Jul 01.
Article En | MEDLINE | ID: mdl-30803468

Background: The U.S. Food and Drug Administration's (FDA) Bacteriological Analytical Manual (BAM) uses Bacillus cereus rapid agar (BACARA) and Mannitol-yolk-polymyxin (MYP) agar for the enumeration of the members of B. cereus group. Objective: The automated TEMPO Most Probable Number system was compared with the FDA BAM method for the detection of B. cereus group members in cosmetic products. Methods: We inoculated a range of cosmetic products with pure B. cereus spore suspensions (density = 0.5 McFarland) at high (6 log CFU/mL), medium (5 log CFU/mL), and low (4 log CFU/mL) levels. Test portions were aged for 72 h. Five replicates per sample were analyzed; uninoculated test portions served as controls. We also evaluated whether TEMPO BC erroneously detected non-B. cereus or other adulterant organisms. Results: No significant differences (P > 0.05) were found among the TEMPO BC and the BAM spiral plating methods. Correlations between TEMPO BC - BACARA and TEMPO BC - MYP were 0.895 and 0.893 for powder type products, 0.834 and 0.846 for cream and oil-based products, and 0.929 and 0.923 for liquid products, respectively. Non-B. cereus strains were not detected by TEMPO BC. Conclusions: The TEMPO BC method can be used for the detection of B. cereus in cosmetic products without preservatives, or those preserved with either phenoxyethanol or other organic substances.


Bacillus cereus/isolation & purification , Cell Culture Techniques/methods , Cosmetics , Household Products/microbiology , Anti-Infective Agents, Local/pharmacology , Bacterial Load , Ethylene Glycols/pharmacology
15.
J Clin Microbiol ; 57(5)2019 05.
Article En | MEDLINE | ID: mdl-30728194

Foodborne pathogen surveillance in the United States is transitioning from strain identification using restriction digest technology (pulsed-field gel electrophoresis [PFGE]) to shotgun sequencing of the entire genome (whole-genome sequencing [WGS]). WGS requires a new suite of analysis tools, some of which have long histories in academia but are new to the field of public health and regulatory decision making. Although the general workflow is fairly standard for collecting and analyzing WGS data for disease surveillance, there are a number of differences in how the data are collected and analyzed across public health agencies, both nationally and internationally. This impedes collaborative public health efforts, so national and international efforts are underway to enable direct comparison of these different analysis methods. Ultimately, the harmonization efforts will allow the (mutually trusted and understood) production and analysis of WGS data by labs and agencies worldwide, thus improving outbreak response capabilities globally. This review provides a historical perspective on the use of WGS for pathogen tracking and summarizes the efforts underway to ensure the major steps in phylogenomic pipelines used for pathogen disease surveillance can be readily validated. The tools for doing this will ensure that the results produced are sound, reproducible, and comparable across different analytic approaches.


Bacteria/genetics , Data Analysis , Foodborne Diseases/diagnosis , Phylogeny , Bacteria/pathogenicity , Computational Biology/methods , Computational Biology/standards , Disease Outbreaks/prevention & control , Electrophoresis, Gel, Pulsed-Field , Epidemiological Monitoring , Genome, Bacterial , Humans , Public Health , United States , Whole Genome Sequencing
16.
J AOAC Int ; 102(2): 497-507, 2019 Mar 01.
Article En | MEDLINE | ID: mdl-30274567

The TRANSIA® PLATE Staphylococcal Enterotoxins enzyme immunoassay (EIA) was validated according to AOAC INTERNATIONAL guidelines for validating qualitative binary chemistry and microbiological methods. Five food matrixes were analyzed to determine the probability of detection (POD) for staphylococcal enterotoxins (SE), including SEA, SEB, SEC1, SEC2, SEC3, SED, and SEE, by the TRANSIA PLATE Staphylococcal Enterotoxins EIA. The food matrixes tested were food types implicated in staphylococcal enterotoxin outbreaks and included raw milk cheese, liquid infant formula, eclairs, ready-to-eat ham, and canned mushrooms. Cheese and infant formula were tested with and without dialysis/concentration. The infant formula was also tested by an independent laboratory. Each food matrix was inoculated with specific toxins at low levels to yield fractional recoveries (0.015-0.20 ng/g of food) for POD analysis. One hundred percent recovery was achieved at concentrations ranging from <0.10 ng/g to 0.25 ng/g of toxin in the various food matrixes. At the same time, 50 Staphylococcus aureus strains known to produce toxins and 30 non-toxin producing bacteria (including 22 Staphylococcus strains) were grown and tested. All the SE toxin-producing strains yielded positive results and all of the exclusivity strains were negative. Robustness studies showed that changes in sample volume, sample pH, and EIA assay temperature had no significant effect on performance. Stability studies showed that kits stored for 12+ months performed as well as newly made kits. This assay has been approved as a Performance Tested MethodSM.


Enterotoxins/analysis , Food Contamination/analysis , Immunoenzyme Techniques , Staphylococcus aureus/chemistry
18.
Article En | MEDLINE | ID: mdl-30533758

The number of Salmonella infection cases linked to pork products has increased. Pathogen presence in the feed mill environment is one of the many potential transmission routes into the food production chain. Here, we describe the draft genome sequences of 57 Salmonella enterica isolates from selected U.S. swine feed mills.

19.
J AOAC Int ; 101(5): 1482-1489, 2018 Sep 01.
Article En | MEDLINE | ID: mdl-29678220

BACKGROUND: Staphylococcal food poisoning (SFP) frequently causes illnesses worldwide. SFP occurs from the ingestion of staphylococcal enterotoxins (SEs) preformed in foods by enterotoxigenic strains of Staphylococcus species, primarily S. aureus. SEG, SEH, and SEI induce emesis and have been implicated in outbreaks. Immunological-based methods are deemed the most practical methods for the routine analysis of SEs in foods given their ease of use, sensitivity, specificity, and commercial availability. These kits are routinely used to test for SEA-SEE. However, only recently has a kit been developed to detect SEG, SEH, and SEI. OBJECTIVE: Our research examined the performance of the novel VIDAS® Staph Enterotoxin III (SET3) for the detection of staphylococcal enterotoxins SEG, SEH, and SEI in foods. METHODS: Here we assess the sensitivity and specificity of SET3 using duplicate test portions of six foods at varying concentrations of inclusivity and exclusivity inocula: pure SEG, SEH, SEI, S. aureus strain extracts positive for seg, seh, and sei, as well as SEA, SEB, SEC, SED, and SEE. RESULTS: The overall detection limit was less than 2.09 ng/mL for foods inoculated with SEG, SEH, and SEI, with no cross reactivity observed. HIGHLIGHTS: Integrating concurrent testing to detect the presence of SEA-SEE and SEG-SEI utilizing the SET3 along with the VIDAS SET2, Ridascreen® SET total, or other comparable kits will be instrumental for the future food assessments in our laboratory and may become the new standard for SE analysis of foods.


Enterotoxins/analysis , Food Analysis/methods , Superantigens/analysis , Food Microbiology , Humans , Limit of Detection , Staphylococcal Food Poisoning/microbiology , Staphylococcus aureus/isolation & purification
20.
J AOAC Int ; 101(4): 1127-1134, 2018 Jul 01.
Article En | MEDLINE | ID: mdl-29216934

Staphylococcus aureus is a Gram-positive bacterium capable of causing a wide array of infections. Generally a commensal organism, S. aureus encodes several virulence mechanisms that contribute to disease progression. This review highlights toxins as a secreted virulence factor by S. aureus, the diseases that manifest as a result, and the methods used to detect them. In particular, the advantages and limitations of current toxin detection methods are discussed.


Staphylococcal Infections/epidemiology , Staphylococcus aureus/pathogenicity , Toxins, Biological/analysis , Bacterial Toxins/analysis , Bacterial Toxins/metabolism , Disease Reservoirs , Humans , Immunoassay/methods , Staphylococcal Food Poisoning/epidemiology , Staphylococcal Food Poisoning/microbiology , Staphylococcal Infections/microbiology , Toxins, Biological/metabolism , Virulence Factors
...