Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 6641, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095116

RESUMEN

Destabilase from the medical leech Hirudo medicinalis belongs to the family of i-type lysozymes. It has two different enzymatic activities: microbial cell walls destruction (muramidase activity), and dissolution of the stabilized fibrin (isopeptidase activity). Both activities are known to be inhibited by sodium chloride at near physiological concentrations, but the structural basis remains unknown. Here we present two crystal structures of destabilase, including a 1.1 Å-resolution structure in complex with sodium ion. Our structures reveal the location of sodium ion between Glu34/Asp46 residues, which were previously recognized as a glycosidase active site. While sodium coordination with these amino acids may explain inhibition of the muramidase activity, its influence on previously suggested Ser49/Lys58 isopeptidase activity dyad is unclear. We revise the Ser49/Lys58 hypothesis and compare sequences of i-type lysozymes with confirmed destabilase activity. We suggest that the general base for the isopeptidase activity is His112 rather than Lys58. pKa calculations of these amino acids, assessed through the 1 µs molecular dynamics simulation, confirm the hypothesis. Our findings highlight the ambiguity of destabilase catalytic residues identification and build foundations for further research of structure-activity relationship of isopeptidase activity as well as structure-based protein design for potential anticoagulant drug development.


Asunto(s)
Hirudo medicinalis , Sanguijuelas , Animales , Hirudo medicinalis/química , Muramidasa/química , Endopeptidasas/metabolismo , Sanguijuelas/metabolismo , Fibrinolíticos/uso terapéutico
2.
J Biomol Struct Dyn ; 36(1): 45-53, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27884082

RESUMEN

The histone-like (HU) protein is one of the major nucleoid-associated proteins involved in DNA supercoiling and compaction into bacterial nucleoid as well as in all DNA-dependent transactions. This small positively charged dimeric protein binds DNA in a non-sequence specific manner promoting DNA super-structures. The majority of HU proteins are highly conserved among bacteria; however, HU protein from Mycoplasma gallisepticum (HUMgal) has multiple amino acid substitutions in the most conserved regions, which are believed to contribute to its specificity to DNA targets unusual for canonical HU proteins. In this work, we studied the structural dynamic properties of the HUMgal dimer by NMR spectroscopy and MD simulations. The obtained all-atom model displays compliance with the NMR data and confirms the heterogeneous backbone flexibility of HUMgal. We found that HUMgal, being folded into a dimeric conformation typical for HU proteins, has a labile α-helical body with protruded ß-stranded arms forming DNA-binding domain that are highly flexible in the absence of DNA. The amino acid substitutions in conserved regions of the protein are likely to affect the conformational lability of the HUMgal dimer that can be responsible for complex functional behavior of HUMgal in vivo, e.g. facilitating its spatial adaptation to non-canonical DNA-targets.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Mycoplasma gallisepticum/metabolismo , Conformación Proteica , Multimerización de Proteína , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Mycoplasma gallisepticum/genética , Unión Proteica , Homología de Secuencia de Aminoácido
3.
J Biomol Struct Dyn ; 36(16): 4392-4404, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29283021

RESUMEN

The histone-like (HU) protein is one of the major nucleoid-associated proteins of the bacterial nucleoid, which shares high sequence and structural similarity with IHF but differs from the latter in DNA-specificity. Here, we perform an analysis of structural-dynamic properties of HU protein from Spiroplasma melliferum and compare its behavior in solution to that of another mycoplasmal HU from Mycoplasma gallisepticum. The high-resolution heteronuclear NMR spectroscopy was coupled with molecular-dynamics study and comparative analysis of thermal denaturation of both mycoplasmal HU proteins. We suggest that stacking interactions in two aromatic clusters in the HUSpm dimeric interface determine not only high thermal stability of the protein, but also its structural plasticity experimentally observed as slow conformational exchange. One of these two centers of stacking interactions is highly conserved among the known HU and IHF proteins. Second aromatic core described recently in IHFs and IHF-like proteins is considered as a discriminating feature of IHFs. We performed an electromobility shift assay to confirm high affinities of HUSpm to both normal and distorted dsDNA, which are the characteristics of HU protein. MD simulations of HUSpm with alanine mutations of the residues forming the non-conserved aromatic cluster demonstrate its role in dimer stabilization, as both partial and complete distortion of the cluster enhances local flexibility of HUSpm.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Fenilalanina/metabolismo , Spiroplasma/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Mutagénesis Insercional , Mycoplasma gallisepticum/genética , Mycoplasma gallisepticum/metabolismo , Fenilalanina/química , Fenilalanina/genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Especificidad de la Especie , Spiroplasma/genética , Temperatura
4.
PLoS One ; 12(11): e0188037, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29131864

RESUMEN

BACKGROUND: The structure and function of bacterial nucleoid are controlled by histone-like proteins of HU/IHF family, omnipresent in bacteria and also founding archaea and some eukaryotes.HU protein binds dsDNA without sequence specificity and avidly binds DNA structures with propensity to be inclined such as forks, three/four-way junctions, nicks, overhangs and DNA bulges. Sequence comparison of thousands of known histone-like proteins from diverse bacteria phyla reveals relation between HU/IHF sequence, DNA-binding properties and other protein features. METHODOLOGY AND PRINCIPAL FINDINGS: Performed alignment and clusterization of the protein sequences show that HU/IHF family proteins can be unambiguously divided into three groups, HU proteins, IHF_A and IHF_B proteins. HU proteins, IHF_A and IHF_B proteins are further partitioned into several clades for IHF and HU; such a subdivision is in good agreement with bacterial taxonomy. We also analyzed a hundred of 3D fold comparative models built for HU sequences from all revealed HU clades. It appears that HU fold remains similar in spite of the HU sequence variations. We studied DNA-binding properties of HU from N. gonorrhoeae, which sequence is similar to one of E.coli HU, and HU from M. gallisepticum and S. melliferum which sequences are distant from E.coli protein. We found that in respect to dsDNA binding, only S. melliferum HU essentially differs from E.coli HU. In respect to binding of distorted DNA structures, S. melliferum HU and E.coli HU have similar properties but essentially different from M. gallisepticum HU and N. gonorrhea HU. We found that in respect to dsDNA binding, only S. melliferum HU binds DNA in non-cooperative manner and both mycoplasma HU bend dsDNA stronger than E.coli and N. gonorrhoeae. In respect to binding to distorted DNA structures, each HU protein has its individual profile of affinities to various DNA-structures with the increased specificity to DNA junction. CONCLUSIONS AND SIGNIFICANCE: HU/IHF family proteins sequence alignment and classification are updated. Comparative modeling demonstrates that HU protein 3D folding's even more conservative than HU sequence. For the first time, DNA binding characteristics of HU from N. gonorrhoeae, M. gallisepticum and S. melliferum are studied. Here we provide detailed analysis of the similarity and variability of DNA-recognizing and bending of four HU proteins from closely and distantly related HU clades.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Sitios de Unión , ADN Bacteriano/química , Modelos Moleculares , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...