Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Appl Radiat Isot ; 193: 110648, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36669265

RESUMEN

Occupational radiation exposure can occur due to various human activities, including the use of radiation in medicine. Occupationally exposed personnel surpassing 7.4 millions, and respresent the biggest single group of employees who are exposed to artificial radiation sources at work. This study compares the occupational radiation dose levels for 145 workers in four different hospitals located in the Aseer region in Saudi Arabia. The occupational exposure was quantified using thermoluminescence dosimeters (TLD-100). The levels of annual occupational exposures in targeted hospitals were calculated and compared with the levels of the international atomic energy agency (IAEA) Safety Standards. An average yearly cumulative dose for the two consecutive years. The average, highest and lowest resulted occupational doses under examination in this work is 1.42, 3.9 mSv and 0.72 for workers in various diagnostic radiology procedures. The resulted annual effective dose were within the IAEA approved yearly dose limit for occupational exposure of workers over 18, which is 20 mSv. Staff should be monitored on a regular basis, according to current practice, because their annual exposure may surpass 15% of the annual effective doses.


Asunto(s)
Exposición Profesional , Exposición a la Radiación , Traumatismos por Radiación , Monitoreo de Radiación , Humanos , Monitoreo de Radiación/métodos , Dosis de Radiación , Radiografía , Exposición Profesional/análisis
2.
Appl Radiat Isot ; 193: 110626, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640699

RESUMEN

Breast cancer is a common malignancy for females (25% of female cancers) and also has low incidence in males. It was estimated that 1% of all breast malignancies occur in males with mortality rate about 20%, with annual increase in incidence. Risk factors include age, family history, exposure to ionizing radiation and high estrogen and low of androgens hormones level. Diagnosis and screening are challenging due to limiting effectiveness of breast cancer screening. Therefore, patients may expose to ionizing radiation that may contribute in breast cancer incidence in males. In literature, limited studies were published regarding radiation exposure for males during mammography. The objective of this research is to quantify patient doses during male mammogram and to estimate the projected radiogenic risk during the procedure. In total, 42 male patients were undergone mammogram for breast cancer diagnosis during two consecutive years. The mean and range of patient age (years) is 45 (23-80). The mean and standard deviation (SD) of the peak tube potential and tube current time product are 28.64 ± 2. and 149 ± 35.1, respectively. The mean, and range of patients' entrance surface air kerma (ESAK, mGy) per single breast procedure was 5.3 (0.47-27.5). Male patient's received comparable radiation dose per mammogram compared to female procedures. With increasing incidence of male breast cancer, proper guidelines are necessary for the mammographic procedure are necessary to reduce unnecessary radiation doses and radiogenic risk.


Asunto(s)
Neoplasias de la Mama , Exposición a la Radiación , Humanos , Femenino , Masculino , Dosis de Radiación , Mamografía/métodos , Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Exposición a la Radiación/análisis
3.
Appl Radiat Isot ; 193: 110627, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36584412

RESUMEN

Computed tomography is widely used for planar imaging. Previous studies showed that CR systems involve higher patient radiation doses compared to digital systems. Therefore, assessing the patient's dose and CR system performance is necessary to ensure that patients received minimal dose with the highest possible image quality. The study was performed at three medical diagnostic centers in Sudan: Medical Corps Hospital (MCH), Advance Diagnostic Center (ADC), and Advance Medical Center (AMC). The following tools were used in this study: Tape measure, Adhesive tape, 1.5 mm copper filtration (>10 × 10 cm), TO 20 threshold contrast test object, Resolution test object (e.g., Huttner 18), MI geometry test object or lead ruler, Contact mish, Piranha (semiconductor detector), Small lead or copper block (∼5 × 5 cm), and Steel ruler, to do a different type of tests (Dark Noise, Erasure cycle efficiency, Sensitivity Index calibration, Sensitivity Index consistency, Uniformity, Scaling errors, Blurring, Limiting spatial Resolution, Threshold, and Laser beam Function. Entrance surface air kerma (ESAK (mGy) was calculated from patient exposure parameters using DosCal software for three imaging modalities. A total of 199 patients were examined (112 chest X rays, 77 lumbar spine). The mean and standard deviation (sd) for patients ESAK (mGy) were 2.56 ± 0.1 mGy and 1.6 mGy for the Anteroposterior (AP) and lateral projections for the lumbar spine, respectively. The mean and sd for the patient's chest doses were 0.1 ± 0.01 for the chest X-ray procedures. The three medical diagnostic centers' CR system performance was evaluated and found that all of the three centers have good CR system functions. All the centers satisfy all the criteria of acceptable visual tests. CR's image quality and sensitivity were evaluated, and the CR image is good because it has good contrast and resolution. All the CR system available in the medical centers and upgraded from old X-ray systems to new systems, has been found to work well. The patient's doses were comparable for the chest X-ray procedures, while patients' doses from the lumbar spine showed variation up to 2 folds due to the variation in patients' weight and X-ray machine setting. Patients dose optimization is recommended to ensure the patients received a minimal dose while obtaining the diagnostic findings.


Asunto(s)
Cobre , Vértebras Lumbares , Humanos , Dosis de Radiación , Radiografía , Rayos X
4.
Appl Radiat Isot ; 192: 110610, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36525913

RESUMEN

In comparison to adults and paediatric are more sensitive to ionizing radiation exposure. Computed tomography (CT) is now the dominant source of medical radiologic tests for patients, accounting for more than 70% of total doses to the general public. Paediatric CT brain scans (with and without contrast) are routinely performed for a variety of clinical reasons. As a result, this parameter must be calculated in order to determine relative radiation risk. The goal of this study is to assess the radiation risk to children during CT brain diagnostic procedures. Three hundred fifty three child patients' radiation risk doses were assessed over the course of a year. The mean and ranged of the children's radiation doses were 40.6 ± 8.8 (27.8-45.8) CTDIvol (mGy) and 850 ± 230 (568.1-1126.4) DLP (mGy.cm) for the brain with contrast medium. For CT brain without contrast, the patients' doses were 40.9 ± 9.4 (14.27-64.07) CTDIvol (mGy), and 866.1 ± 289.3 (203.6-2484.9) DLP (mGy.cm). The characteristics related to the radiation dose were retrieved from the scan protocol generated by the CT system by the participating physicians after each procedure. Furthermore, optimizing the CT acquisition parameter is critical for increasing the benefit while lowering the procedure's radiogenic risk. The patients' radiation dose is comparable with the most previously published studies and international diagnostic reference levels (DRLs). Radiation dose optimization is recommended due to high sensitivity of the paediatric patients to ionizing radiation.


Asunto(s)
Angiografía por Tomografía Computarizada , Tomografía Computarizada por Rayos X , Adulto , Humanos , Niño , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Cabeza , Encéfalo/diagnóstico por imagen , Valores de Referencia
5.
Appl Radiat Isot ; 181: 110097, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35063867

RESUMEN

Staff occupational radiation exposure is limited to 20 mSv annually to preclude tissue reaction and lower risk of cancer effect. Staff occupational exposure arises during the preparation, injection, and scanning of the patients. Recent studies reported that nuclear medicine personnel might exceed the annual dose limit in high workload and poor radiation protection circumstances. Therefore, an accurate estimation of the annual dose limit is recommended. The goal of this research is to calculate the cumulative external effective dose (mSv) per year for nuclear medicine physicians, technologists, and nurses at SPECT/CT department. A total of 15 staff worked in the nuclear medicine department at King Saud Medical City (KSMC), Riyadh, Saudi Arabia were evaluated for the last six years. 99mTc is used more frequently for most of the patients. The procedures include renal, cardiac scintigraphy procedures. Staff dose was quantified using calibrated thermoluminecnt dosimeters (TLD-100) with an automatic TLD reader (Harshaw 6600). Exposure to ionizing radiation was evaluated in terms of deep doses (Hp(10) were evaluated. The overall average and standard deviation of the external doses for nuclear medicine physicians, technologists' and nurses were 1.8 ± 0.7, 1.9 ± 0.6, 2.0 ± 0.9, 2.2 ± 0.8, 6.0 ± 2.8, and 3.6 ± 1.3 for the years 2015,2016,2017,2018,2019, and 2020, respectively. Technologists and nurses received higher doses of compared to the nuclear medicine physicians. Technologists and nurses involved in radionuclide preparation, patients' injection, and image acquisition. Staff annual exposure is below the annual dose limits; however, this external dose is considered high compared to the current workload.


Asunto(s)
Exposición Profesional , Exposición a la Radiación , Monitoreo de Radiación , Servicio de Radiología en Hospital , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/efectos adversos , Adulto , Femenino , Humanos , Masculino , Dosis Máxima Tolerada , Exposición Profesional/prevención & control , Personal de Hospital , Exposición a la Radiación/efectos adversos , Protección Radiológica , Servicio de Radiología en Hospital/normas , Radiometría , Medición de Riesgo , Arabia Saudita , Carga de Trabajo
6.
Sci Rep ; 11(1): 12653, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135425

RESUMEN

The advanced image sensors installed on now-ubiquitous smartphones can be used to detect ionising radiation in addition to visible light. Radiation incidents on a smartphone camera's Complementary Metal Oxide Semiconductor (CMOS) sensor creates a signal which can be isolated from a visible light signal to turn the smartphone into a radiation detector. This work aims to report a detailed investigation of a well-reviewed smartphone application for radiation dosimetry that is available for popular smartphone devices under a calibration protocol that is typically used for the commercial calibration of radiation detectors. The iPhone 6s smartphone, which has a CMOS camera sensor, was used in this study. Black tape was utilized to block visible light. The Radioactivity counter app developed by Rolf-Dieter Klein and available on Apple's App Store was installed on the device and tested using a calibrated radioactive source, calibration concrete pads with a range of known concentrations of radioactive elements, and in direct sunlight. The smartphone CMOS sensor is sensitive to radiation doses as low as 10 µGy/h, with a linear dose response and an angular dependence. The RadioactivityCounter app is limited in that it requires 4-10 min to offer a stable measurement. The precision of the measurement is also affected by heat and a smartphone's battery level. Although the smartphone is not as accurate as a conventional detector, it is useful enough to detect radiation before the radiation reaches hazardous levels. It can also be used for personal dose assessments and as an alarm for the presence of high radiation levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA