Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Metab ; 12(1): 24, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113152

RESUMEN

BACKGROUND: Prostate cancer (PCa) shows a rewired metabolism featuring increased fatty acid uptake and synthesis via de novo lipogenesis, both sharply related to mitochondrial physiology. The docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that exerts its antitumoral properties via different mechanisms, but its specific action on mitochondria in PCa is not clear. Therefore, we investigated whether the DHA modulates mitochondrial function in PCa cell lines. METHODS: Here, we evaluated mitochondrial function of non-malignant PNT1A and the castration-resistant (CRPC) prostate 22Rv1 and PC3 cell lines in response to DHA incubation. For this purpose, we used Seahorse extracellular flux assay to assess mitochondria function, [14C]-glucose to evaluate its oxidation as well as its contribution to fatty acid synthesis, 1H-NMR for metabolite profile determination, MitoSOX for superoxide anion production, JC-1 for mitochondrial membrane polarization, mass spectrometry for determination of phosphatidylglycerol levels and composition, staining with MitoTracker dye to assess mitochondrial morphology under super-resolution in addition to Transmission Electron Microscopy, In-Cell ELISA for COX-I and SDH-A protein expression and flow cytometry (Annexin V and 7-AAD) for cell death estimation. RESULTS: In all cell lines DHA decreased basal respiratory activity, ATP production, and the spare capacity in mitochondria. Also, the omega-3 induced mitochondrial hyperpolarization, ROS overproduction and changes in membrane phosphatidylglycerol composition. In PNT1A, DHA led to mitochondrial fragmentation and it increased glycolysis while in cancer cells it stimulated glucose oxidation, but decreased de novo lipogenesis specifically in 22Rv1, indicating a metabolic shift. In all cell lines, DHA modulated several metabolites related to energy metabolism and it was incorporated in phosphatidylglycerol, a precursor of cardiolipin, increasing the unsaturation index in the mitochondrial membrane. Accordingly, DHA triggered cell death mainly in PNT1A and 22Rv1. CONCLUSION: In conclusion, mitochondrial metabolism is significantly affected by the PUFA supplementation to the point that cells are not able to proliferate or survive under DHA-enriched condition. Moreover, combination of DHA supplementation with inhibition of metabolism-related pathways, such as de novo lipogenesis, may be synergistic in castration-resistant prostate cancer.

2.
Animals (Basel) ; 14(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998002

RESUMEN

As Guest Editors of this Special Issue on canine mammary tumors, we are pleased to present a collection of articles on this highly relevant and timely topic [...].

3.
Cancers (Basel) ; 16(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39061201

RESUMEN

(Background). Canine mammary tumors (CMTs) have emerged as an important model for understanding pathophysiological aspects of human disease. Liquid biopsy (LB), which relies on blood-borne biomarkers and offers minimal invasiveness, holds promise for reflecting the disease status of patients. Small extracellular vesicles (SEVs) and their protein cargo have recently gained attention as potential tools for disease screening and monitoring. (Objectives). This study aimed to isolate SEVs from canine patients and analyze their proteomic profile to assess their diagnostic and prognostic potential. (Methods). Plasma samples were collected from female dogs grouped into CMT (malignant and benign), healthy controls, relapse, and remission groups. SEVs were isolated and characterized using ultracentrifugation (UC), nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Proteomic analysis of circulating SEVs was conducted using liquid chromatography-mass spectrometry (LC-MS). (Results). While no significant differences were observed in the concentration and size of exosomes among the studied groups, proteomic profiling revealed important variations. Mass spectrometry identified exclusive proteins that could serve as potential biomarkers for mammary cancer. These included Inter-alpha-trypsin inhibitor heavy chain (ITIH2 and ITI4), phosphopyruvate hydratase or alpha enolase (ENO1), eukaryotic translation elongation factor 2 (eEF2), actin (ACTB), transthyretin (TTR), beta-2-glycoprotein 1 (APOH) and gelsolin (GSN) found in female dogs with malignant tumors. Additionally, vitamin D-binding protein (VDBP), also known as group-specific component (GC), was identified as a protein present during remission. (Conclusions). The results underscore the potential of proteins found in SEVs as valuable biomarkers in CMTs. Despite the lack of differences in vesicle concentration and size between the groups, the analysis of protein content revealed promising markers with potential applications in CMT diagnosis and monitoring. These findings suggest a novel approach in the development of more precise and effective diagnostic tools for this challenging clinical condition.

4.
Biomedicines ; 11(10)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37893211

RESUMEN

Cancer is a complex and heterogeneous disease, influenced by various factors that affect its progression and response to treatment. Although a histopathological diagnosis is crucial for identifying and classifying cancer, it may not accurately predict the disease's development and evolution in all cases. To address this limitation, liquid biopsy has emerged as a valuable tool, enabling a more precise and non-invasive analysis of cancer. Liquid biopsy can detect tumor DNA fragments, circulating tumor cells, and exosomes released by cancer cells into the bloodstream. Exosomes attracted significant attention in cancer research because of their specific protein composition, which can provide valuable insights into the disease. The protein profile of exosomes often differs from that of normal cells, reflecting the unique molecular characteristics of cancer. Analyzing these proteins can help identify cancer-associated markers that play important roles in tumor progression, invasion, and metastasis. Ongoing research and clinical validation are essential to advance and effectively utilize protein biomarkers in cancer. Nevertheless, their potential to improve diagnosis and treatment is highly promising. This review discusses several exosome proteins of interest in breast cancer, particularly focusing on studies conducted in mammary tissue and cell lines in humans and experimental animals. Unfortunately, studies conducted in canine species are scarce. This emphasis sheds light on the limited research available in this field. In addition, we present a curated selection of studies that explored exosomal proteins as potential biomarkers, aiming to achieve benefits in breast cancer diagnosis, prognosis, monitoring, and treatment.

5.
Animals (Basel) ; 13(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37685021

RESUMEN

Canine mammary tumors (CMTs) are among the most common diseases in female dogs and share similarities with human breast cancer, which makes these animals a model for comparative oncology studies. In these tumors, metabolic reprogramming is known as a hallmark of carcinogenesis whereby cells undergo adjustments to meet the high bioenergetic and biosynthetic demands of rapidly proliferating cells. However, such alterations are also vulnerabilities that may serve as a therapeutic strategy, which has mostly been tested in human clinical trials but is poorly explored in CMTs. In this dedicated review, we compiled the metabolic changes described for CMTs, emphasizing the metabolism of carbohydrates, amino acids, lipids, and mitochondrial functions. We observed key factors associated with the presence and aggressiveness of CMTs, such as an increase in glucose uptake followed by enhanced anaerobic glycolysis via the upregulation of glycolytic enzymes, changes in glutamine catabolism due to the overexpression of glutaminases, increased fatty acid oxidation, and distinct effects depending on lipid saturation, in addition to mitochondrial DNA, which is a hotspot for mutations. Therefore, more attention should be paid to this topic given that targeting metabolic fragilities could improve the outcome of CMTs.

6.
Histochem Cell Biol ; 160(5): 419-433, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37474667

RESUMEN

Telocytes are interstitial cells that are present in various tissues, have long cytoplasmic projections known as telopodes, and are classified as CD34+ cells. Telopodes form extensive networks that permeate the stroma, and there is evidence that these networks connect several stromal cell types, giving them an important role in intercellular communication and the maintenance of tissue organisation. Data have also shown that these networks can be impaired and the number of telocytes reduced in association with many pathological conditions such as cancer and fibrosis. Thus, techniques that promote telocyte proliferation have become an important therapeutic target. In this study, ex vivo and in vitro assays were conducted to evaluate the impact on prostatic telocytes of SDF-1, a factor involved in the proliferation and migration of CD34+ cells. SDF-1 caused an increase in the number of telocytes in explants, as well as morphological changes that were possibly related to the proliferation of these cells. These changes involved the fusion of telopode segments, linked to an increase in cell body volume. In vitro assays also showed that SDF-1 enriched prostate stromal cells with telocytes. Altogether, the data indicate that SDF-1 may offer promising uses in therapies that aim to increase the number of telocytes. However, further studies are needed to confirm the efficiency of this factor in different tissues/pathological conditions.


Asunto(s)
Quimiocina CXCL12 , Telocitos , Masculino , Humanos , Quimiocina CXCL12/metabolismo , Telocitos/metabolismo , Telopodos/metabolismo , Células del Estroma , Citoplasma
7.
Reprod Biol ; 22(3): 100674, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35901618

RESUMEN

We examined the consequences of high-fat diet (HFD) on prostate histophysiology in two periods along sexual maturation of rats and the impact on the gland in adulthood. After weaning, male Wistar rats were fed a balanced diet (4 % fat-C3, C6, C9) or a HFD (20 % fat- HF3, HF6, HF9) for 3, 6 or 9 weeks. Fat deposit weights, blood glucose and levels of serum testosterone and estrogen were measured. Prostate was evaluated for histology, proliferative and apoptotic cell index, and for the expression of androgen (AR), estrogen receptors type α (ERα) and aromatase. HFD did not affect estrogen levels and elevated serum testosterone only in HF9. HFD reduced prostate weight in HF6 and increased it in adulthood (HF9) but relative prostate weight was unchanged among groups. Cell proliferation, height and density were higher in epithelium of all HFD-groups, compared to controls, featuring the epithelial hyperplasia. Epithelial apoptosis was lower in HF9. HF3 and HF9 exhibited higher expressions of ERα, indicating that HFD triggers a new activation of ERα expression in the acinar epithelium. The content of prostatic aromatase was also elevated in HF9. Increased numbers of AR-positive cells were observed in all HFD groups, and western blotting analysis showed an increase in the truncated form of 45 kDa (AR45) and a reduction in the expression of 110 kDa-AR for HF3 and HF9. In conclusion, excessive dietary fats during sexual maturation of rats led to developmental programming of the prostate, inducing a hyperplastic status with perturbations in AR isoforms expression and reactivation of ERα in adulthood, whose implications for posterior prostatic health could be detrimental.


Asunto(s)
Receptor alfa de Estrógeno , Próstata , Andrógenos , Animales , Aromatasa , Dieta Alta en Grasa , Estrógenos , Hiperplasia , Masculino , Isoformas de Proteínas , Ratas , Ratas Wistar , Receptores Androgénicos , Maduración Sexual , Testosterona
8.
Cell Biol Int ; 45(8): 1613-1623, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33856089

RESUMEN

The male urogenital system is composed of the reproductive system and the urinary tract; they have an interconnected embryonic development and share one of their anatomical components, the urethra. This system has a highly complex physiology deeply interconnected with the circulatory and nervous systems, as well as being capable of adapting to environmental variations; it also undergoes changes with aging and, in the case of the reproductive system, with seasonality. The stroma is an essential component in this physiological plasticity and its complexity has increased with the description in the last decade of a new cell type, the telocyte. Several studies have demonstrated the presence of telocytes in the organs of the male urogenital system and other systems; however, their exact function is not yet known. The present review addresses current knowledge about telocytes in the urogenital system in terms of their locations, interrelationships, possible functions and pathological implications. It has been found that telocytes in the urogenital system possibly have a leading role in stromal tissue organization/maintenance, in addition to participation in stem cell niches and an association with the immune system, as well as specific functions in the urogenital system, lipid synthesis in the testes, erythropoiesis in the kidneys and the micturition reflex in the bladder. There is also evidence that telocytes are involved in pathologies in the kidneys, urethra, bladder, prostate, and testes.


Asunto(s)
Telocitos/patología , Telocitos/fisiología , Sistema Urogenital/patología , Sistema Urogenital/fisiología , Animales , Enfermedades de los Genitales Masculinos/patología , Enfermedades de los Genitales Masculinos/fisiopatología , Humanos , Metabolismo de los Lípidos/fisiología , Masculino , Próstata/citología , Próstata/patología , Próstata/fisiología , Células Madre/patología , Células Madre/fisiología , Testículo/citología , Testículo/patología , Testículo/fisiología , Vejiga Urinaria/citología , Vejiga Urinaria/patología , Vejiga Urinaria/fisiología , Sistema Urogenital/citología
9.
Sci Rep ; 10(1): 21392, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33288817

RESUMEN

Telocytes are interstitial cells present in the stroma of several organs, including the prostate. There is evidence that these cells are present during prostate alveologenesis, in which these cells play a relevant role, but there is no information about the presence of and possible changes in telocytes during prostate aging. Throughout aging, the prostate undergoes several spontaneous changes in the stroma that are pro-pathogenic. Our study used histochemistry, 3D reconstructions, ultrastructure and immunofluorescence to compare the adult prostate with the senile prostate of the Mongolian gerbil, in order to investigate possible changes in telocytes with senescence and a possible role for these cells in the age-associated alterations. It was found that the layers of perialveolar smooth muscle become thinner as the prostatic alveoli become more dilated during aging, and that telocytes form a network that involves smooth muscle cells, which could possibly indicate a role for telocytes in maintaining the integrity of perialveolar smooth muscles. On the other hand, with senescence, VEGF+ telocytes are seen in stroma possibly contributing to angiogenesis, together with TNFR1+ telocytes, which are associated with a pro-inflammatory microenvironment in the prostate. Together, these data indicate that telocytes are important both in understanding the aging-related changes that are seen in the prostate and also in the search for new therapeutic targets for pathologies whose frequency increases with age.


Asunto(s)
Próstata/citología , Próstata/metabolismo , Telocitos/citología , Telocitos/metabolismo , Animales , Tejido Conectivo/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Técnicas In Vitro , Masculino , Microscopía Electrónica de Transmisión , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(10): 158766, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32712248

RESUMEN

Prostate cancer (PCa) has different molecular features along progression, including androgen profile, which is associated to therapy inefficiency leading to more aggressive phenotype. Docosahexaenoic acid (DHA) has antiproliferative and pro-apoptotic properties in different cancers associated to cell metabolism modulation. The latter is of particular interest since metabolic reprogramming is one of PCa hallmarks, but is not clear how this occurs among disease progression. Therefore, we evaluated DHA antiproliferative potential in distinct androgenic backgrounds associated to metabolism modulation and androgen-regulated genes. For this purpose, pre-malignant PNT1A and tumor AR-positive 22rv1, and AR-negative PC3 cells were incubated with DHA at 100 µM-48 h. DHA reduced at least 26% cell number for all lineages due to S-phase decrease in AR-positive and G2/M arrest in AR-negative. Mitochondrial metabolic rate decreased in PNT1A (~38%) and increased in tumor cells (at least 40%). This was associated with ROS overproduction (1.6-fold PNT1A; 2.1 22rv1; 2.2 PC3), lipid accumulation (3-fold PNT1A; 1.8 22rv1; 3.6 PC3) and mitochondria damage in all cell lines. AKT, AMPK and PTEN were not activated in any cell line, but p-ERK1/2 increased (1.5-fold) in PNT1A. Expression of androgen-regulated and nuclear receptors genes showed that DHA affected them in a distinct pattern in each cell line, but most converged to metabolism regulation, response to hormones, lipids and stress. In conclusion, regardless of androgenic or PTEN background DHA exerted antiproliferative effect associated to cell cycle impairment, lipid deregulation and oxidative stress, but differentially regulated gene expression probably due to distinct molecular features of each pathologic stage.


Asunto(s)
Ciclo Celular/genética , Ácidos Docosahexaenoicos/metabolismo , Redes y Vías Metabólicas/genética , Próstata/metabolismo , Neoplasias de la Próstata/genética , Andrógenos/genética , Andrógenos/metabolismo , Apoptosis/genética , División Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Redes Reguladoras de Genes/genética , Humanos , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
11.
Reprod Toxicol ; 90: 141-149, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31568827

RESUMEN

Vegetable oils are frequently used as a vehicle in the administration of lipophilic drugs in animal tests. However, the composition of these oils may interfere with the results. One alternative to reduce this potential bias is the use of mineral oil, which is not supposed to interfere in the physiology of experimental models, since this oil is considered to be innocous. The present study shows for the first time the effects of the oral administration of corn and mineral on the prostate, demonstrating their interference in homeostasis and revealing their potential to act as endocrine disruptors. Mineral oil treatment increased the expression of AR and ERα and serum estradiol concentrations, while corn oil increased the expression of positive cells for both types of estrogen receptors. The variation in the expression of these hormone receptors resulted in morphological changes in the prostate.


Asunto(s)
Aceite de Maíz/toxicidad , Disruptores Endocrinos/toxicidad , Aceite Mineral/toxicidad , Vehículos Farmacéuticos/toxicidad , Próstata/efectos de los fármacos , Administración Oral , Animales , Estradiol/sangre , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Gerbillinae , Homeostasis/efectos de los fármacos , Masculino , Próstata/metabolismo , Próstata/patología , Receptores Androgénicos/metabolismo , Testosterona/sangre
12.
Cell Biol Int ; 42(4): 470-487, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29278276

RESUMEN

Chronic hyperglycemia increases production of reactive oxygen species, which favors carcinogenesis. The association between diabetes and prostate cancer is controversial. Melatonin has antioxidant, anti-inflammatory, and antiproliferative properties. We investigated whether low doses of melatonin prevent the tissue alterations caused by diabetes and alter prostate histology of healthy rats. We also investigated whether experimental diabetes promoted the development of pathological lesions in the ventral prostate of rats. Melatonin was provided in drinking water (10 µg/kg/day) from age 5 weeks until the end of experiment. Diabetes was induced at 13 weeks by administration of streptozotocin (40 mg/kg, ip). Rats were euthanized at 14 or 21 weeks. Histological and stereological analyses were carried out and the incidence and density of malignant and pre-malignant lesions were assessed. Immunohistochemical assays of α-actin, cell proliferation (PCNA), Bcl-2, glutathione S-transferase (GSTPI), and DNA methylation (5-methylcytidine) were performed. Melatonin did not elicit conspicuous changes in the prostate of healthy animals; in diabetic animals there was a higher incidence of atrophy (93%), microinvasive carcinoma (10%), proliferative inflammatory atrophy, PIA (13%), prostatitis (26%), and prostate intraepithelial neoplasia, PIN (20%) associated with an increase of 40% in global DNA methylation. Melatonin attenuated epithelial and smooth muscle cell (smc) atrophy, especially at short-term diabetes-and normalized incidence of PIN (11%), inflammatory cells infiltrates, prostatitis (0%) and PIA (0%) at long-term diabetes. MLT was effective in preventing inflammatory disorders and PIN under diabetic condition. Although MLT has antioxidant action, it did not influence DNA methylation and not avoid carcinogenesis at low doses.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Complicaciones de la Diabetes/genética , Diabetes Mellitus Experimental/genética , Melatonina/farmacología , Próstata/efectos de los fármacos , Neoplasias de la Próstata/patología , Animales , Antioxidantes/metabolismo , Proliferación Celular/efectos de los fármacos , Complicaciones de la Diabetes/inducido químicamente , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/patología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Masculino , Próstata/metabolismo , Próstata/patología , Prostatitis , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA