Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
ACS Chem Biol ; 18(2): 431-440, 2023 02 17.
Article En | MEDLINE | ID: mdl-36724382

Cyclin-dependent kinases (CDKs) are key mediators of cell proliferation and have been a subject of oncology drug discovery efforts for over two decades. Several CDK and activator cyclin family members have been implicated in regulating the cell division cycle. While it is thought that there are canonical CDK-cyclin pairing preferences, the extent of selectivity is unclear, and increasing evidence suggests that the cell-cycle CDKs can be activated by a pool of available cyclins. The molecular details of CDK-cyclin specificity are not completely understood despite their importance for understanding cancer cell cycles and for pharmacological inhibition of cancer proliferation. We report here a biolayer interferometry assay that allows for facile quantification of CDK binding interactions with their cyclin activators. We applied this assay to measure the impact of Cdk2 inhibitors on Cyclin A (CycA) association and dissociation kinetics. We found that Type I inhibitors increase the affinity between Cdk2 and CycA by virtue of a slowed cyclin dissociation rate. In contrast, Type II inhibitors and other small-molecule Cdk2 binders have distinct effects on the CycA association and dissociation processes to decrease affinity. We propose that the differential impact of small molecules on the cyclin binding kinetics arises from the plasticity of the Cdk2 active site as the kinase transitions between active, intermediate, and inactive states.


CDC2-CDC28 Kinases , Cyclin-Dependent Kinases , Cyclin-Dependent Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , CDC2-CDC28 Kinases/metabolism , Cyclin-Dependent Kinase 2/metabolism , Cyclins/metabolism , Phosphorylation , Cyclin-Dependent Kinase 4/metabolism
2.
Mol Cell ; 74(4): 758-770.e4, 2019 05 16.
Article En | MEDLINE | ID: mdl-30982746

The cyclin-dependent kinases Cdk4 and Cdk6 form complexes with D-type cyclins to drive cell proliferation. A well-known target of cyclin D-Cdk4,6 is the retinoblastoma protein Rb, which inhibits cell-cycle progression until its inactivation by phosphorylation. However, the role of Rb phosphorylation by cyclin D-Cdk4,6 in cell-cycle progression is unclear because Rb can be phosphorylated by other cyclin-Cdks, and cyclin D-Cdk4,6 has other targets involved in cell division. Here, we show that cyclin D-Cdk4,6 docks one side of an alpha-helix in the Rb C terminus, which is not recognized by cyclins E, A, and B. This helix-based docking mechanism is shared by the p107 and p130 Rb-family members across metazoans. Mutation of the Rb C-terminal helix prevents its phosphorylation, promotes G1 arrest, and enhances Rb's tumor suppressive function. Our work conclusively demonstrates that the cyclin D-Rb interaction drives cell division and expands the diversity of known cyclin-based protein docking mechanisms.


Cell Proliferation/genetics , Cyclin D/genetics , Protein Interaction Maps/genetics , Retinoblastoma Protein/genetics , Cell Cycle/genetics , Crk-Associated Substrate Protein/genetics , Cyclin D/chemistry , Cyclin-Dependent Kinase 4/chemistry , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/chemistry , Cyclin-Dependent Kinase 6/genetics , Cyclins/genetics , G1 Phase/genetics , Humans , Molecular Docking Simulation , Phosphorylation/genetics , Protein Binding/genetics , Protein Conformation, alpha-Helical/genetics , Retinoblastoma Protein/chemistry , Retinoblastoma-Like Protein p107/genetics , S Phase/genetics
...