Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114115, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607918

RESUMEN

In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.


Asunto(s)
Región CA1 Hipocampal , Interneuronas , Reconocimiento en Psicología , Péptido Intestinal Vasoactivo , Animales , Interneuronas/metabolismo , Interneuronas/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/citología , Ratones , Masculino , Reconocimiento en Psicología/fisiología , Células Piramidales/metabolismo , Células Piramidales/fisiología , Ratones Endogámicos C57BL , Memoria/fisiología , Parvalbúminas/metabolismo , Conducta Exploratoria/fisiología , Somatostatina/metabolismo
2.
Cell Rep ; 40(1): 111043, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35793625

RESUMEN

Information and action coding by cortical circuits relies on a balanced dialogue between excitation and inhibition. Circuit hyperexcitability is considered a potential pathophysiological mechanism in various brain disorders, but the underlying deficits, especially at early disease stages, remain largely unknown. We report that asymptomatic female mice carrying the chromosome 9 open reading frame 72 (C9orf72) repeat expansion, which represents a high-prevalence genetic abnormality for human amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) spectrum disorder, exhibit abnormal motor cortex output. The number of primary motor cortex (M1) layer 5 pyramidal neurons is reduced in asymptomatic mice, with the surviving neurons receiving a decreased inhibitory drive that results in a higher M1 output, specifically during high-speed animal locomotion. Importantly, using deep-learning algorithms revealed that speed-dependent M1 output predicts the likelihood of C9orf72 genetic expansion. Our data link early circuit abnormalities with a gene mutation in asymptomatic ALS/FTLD carriers.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Corteza Motora , Esclerosis Amiotrófica Lateral/genética , Animales , Proteína C9orf72/genética , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Ratones , Corteza Motora/patología
3.
Nat Rev Neurosci ; 23(8): 476-492, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35637416

RESUMEN

GABAergic inhibitory circuits play an essential role in coordinating various hippocampal functions. Several decades of work dedicated to a thorough characterization of hippocampal inhibitory populations have highlighted how specific types of interneuron can contribute to network activity. Recent studies have used genetically targeted recordings and peturbations of activity during memory-related behaviours to determine how interneurons that inhibit distinct subcellular domains of principal cells or specialize in principal cell disinhibition may sculpt hippocampal memory. These studies highlight unique contributions of distinct interneuron types to the temporal binding of hippocampal ensembles, synaptic plasticity and the acquisition of spatial and contextual information. Here, we review the current state of knowledge around hippocampal inhibition and memory by discussing the multifaceted roles of populations of inhibitory cells at different stages of hippocampal mnemonic processing.


Asunto(s)
Hipocampo , Interneuronas , Hipocampo/fisiología , Humanos , Interneuronas/fisiología , Memoria , Plasticidad Neuronal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA