Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Spinal Cord ; 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38565958

OBJECTIVE: To develop a self-report version of the Walking Index for Spinal Cord Injury II (WISCI II) and to test its reliability and validity. STUDY DESIGN: Psychometric study. SETTING: Spinal cord injury (SCI) rehabilitation centres in Australia and Italy. PARTICIPANTS: Eighty people with SCI were recruited from a sample of convenience. METHODS: Two self-report versions of the WISCI II were developed. Both versions were administered in English at the Australian site, and in Italian at the Italian site through an online platform. The format of the first self-report version (SR-V1) was similar to the original face-to-face WISCI II. The second self-report version (SR-V2) had more questions, but each question required participants to focus on one aspect of walking at a time. Participants completed SR-V1 and SR-V2 with assistance from research physiotherapists on two separate occasions, three to seven days apart. The original WISCI II was then administered through a face-to-face assessment by an independent physiotherapist. The intra-rater reliability and validity of SR-V1 and SR-V2 were determined with intraclass correlation coefficients (ICC) and percent close agreements. RESULTS: The data from the Australian and Italian sites were pooled. The validity and reliability of the two self-report versions were very similar, with SR-V2 performing slightly better than SR-V1. The ICC (95% confidence interval) of SR-V2 was 0.87 (0.81-0.92). The ICC reflecting the agreement between the self-report and the face-to-face WISCI was 0.89 (0.84-0.93). CONCLUSION: Both versions of the self-report WISCI II provide a reasonable substitute for a face-to-face assessment although therapists preferred SR-V2.

2.
Trials ; 24(1): 736, 2023 Nov 16.
Article En | MEDLINE | ID: mdl-37974284

BACKGROUND: Electroencephalography (EEG)-based brain-computer interfaces (BCIs) allow to modulate the sensorimotor rhythms and are emerging technologies for promoting post-stroke motor function recovery. The Promotoer study aims to assess the short and long-term efficacy of the Promotoer system, an EEG-based BCI assisting motor imagery (MI) practice, in enhancing post-stroke functional hand motor recovery. This paper details the statistical analysis plan of the Promotoer study. METHODS: The Promotoer study is a randomized, controlled, assessor-blinded, single-centre, superiority trial, with two parallel groups and a 1:1 allocation ratio. Subacute stroke patients are randomized to EEG-based BCI-assisted MI training or to MI training alone (i.e. no BCI). An internal pilot study for sample size re-assessment is planned. The primary outcome is the effectiveness of the Upper Extremity Fugl-Meyer Assessment (UE-FMA) score. Secondary outcomes include clinical, functional, and user experience scores assessed at the end of intervention and at follow-up. Neurophysiological assessments are also planned. Effectiveness formulas have been specified, and intention-to-treat and per-protocol populations have been defined. Statistical methods for comparisons of groups and for development of a predictive score of significant improvement are described. Explorative subgroup analyses and methodology to handle missing data are considered. DISCUSSION: The Promotoer study will provide robust evidence for the short/long-term efficacy of the Promotoer system in subacute stroke patients undergoing a rehabilitation program. Moreover, the development of a predictive score of response will allow transferring of the Promotoer system to optimal clinical practice. By carefully describing the statistical principles and procedures, the statistical analysis plan provides transparency in the analysis of data. TRIAL REGISTRATION: ClinicalTrials.gov NCT04353297 . Registered on April 15, 2020.


Brain-Computer Interfaces , Stroke Rehabilitation , Stroke , Humans , Recovery of Function/physiology , Stroke Rehabilitation/methods , Pilot Projects , Stroke/diagnosis , Stroke/therapy , Stroke/complications , Upper Extremity
3.
BMC Neurol ; 23(1): 414, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37990160

BACKGROUND: Traumatic cervical spinal cord injury (SCI) results in reduced sensorimotor abilities that strongly impact on the achievement of daily living activities involving hand/arm function. Among several technology-based rehabilitative approaches, Brain-Computer Interfaces (BCIs) which enable the modulation of electroencephalographic sensorimotor rhythms, are promising tools to promote the recovery of hand function after SCI. The "DiSCIoser" study proposes a BCI-supported motor imagery (MI) training to engage the sensorimotor system and thus facilitate the neuroplasticity to eventually optimize upper limb sensorimotor functional recovery in patients with SCI during the subacute phase, at the peak of brain and spinal plasticity. To this purpose, we have designed a BCI system fully compatible with a clinical setting whose efficacy in improving hand sensorimotor function outcomes in patients with traumatic cervical SCI will be assessed and compared to the hand MI training not supported by BCI. METHODS: This randomized controlled trial will include 30 participants with traumatic cervical SCI in the subacute phase randomly assigned to 2 intervention groups: the BCI-assisted hand MI training and the hand MI training not supported by BCI. Both interventions are delivered (3 weekly sessions; 12 weeks) as add-on to standard rehabilitation care. A multidimensional assessment will be performed at: randomization/pre-intervention and post-intervention. Primary outcome measure is the Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP) somatosensory sub-score. Secondary outcome measures include the motor and functional scores of the GRASSP and other clinical, neuropsychological, neurophysiological and neuroimaging measures. DISCUSSION: We expect the BCI-based intervention to promote meaningful cortical sensorimotor plasticity and eventually maximize recovery of arm functions in traumatic cervical subacute SCI. This study will generate a body of knowledge that is fundamental to drive optimization of BCI application in SCI as a top-down therapeutic intervention, thus beyond the canonical use of BCI as assistive tool. TRIAL REGISTRATION: Name of registry: DiSCIoser: improving arm sensorimotor functions after spinal cord injury via brain-computer interface training (DiSCIoser). TRIAL REGISTRATION NUMBER: NCT05637775; registration date on the ClinicalTrial.gov platform: 05-12-2022.


Brain-Computer Interfaces , Spinal Cord Injuries , Humans , Arm , Upper Extremity , Spinal Cord Injuries/rehabilitation , Neuronal Plasticity , Recovery of Function/physiology
4.
BMJ Open ; 13(8): e072219, 2023 08 29.
Article En | MEDLINE | ID: mdl-37643854

INTRODUCTION: People with spinal cord injury receive physical rehabilitation to promote neurological recovery. Physical rehabilitation commences as soon as possible when a person is medically stable. One key component of physical rehabilitation is motor training. There is initial evidence to suggest that motor training can enhance neurological recovery if it is provided soon after injury and in a high dosage. The Early and Intensive Motor Training Trial is a pragmatic randomised controlled trial to determine whether 10 weeks of intensive motor training enhances neurological recovery for people with spinal cord injury. This pragmatic randomised controlled trial will recruit 220 participants from 15 spinal injury units in Australia, Scotland, Italy, Norway, England, Belgium and the Netherlands. This protocol paper describes the process evaluation that will run alongside the Early and Intensive Motor Training Trial. This process evaluation will help to explain the trial results and explore the potential facilitators and barriers to the possible future rollout of the trial intervention. METHODS AND ANALYSIS: The UK Medical Research Council process evaluation framework and the Implementation Research Logic Model will be used to explain the trial outcomes and inform future implementation. Key components of the context, implementation and mechanism of impact, as well as the essential elements of the intervention and outcomes, will be identified and analysed. Qualitative and quantitative data will be collected and triangulated with the results of the Early and Intensive Motor Training Trial to strengthen the findings of this process evaluation. ETHICS AND DISSEMINATION: Ethical approval for the Early and Intensive Motor Training Trial and process evaluation has been obtained from the Human Research Ethics Committee at the Northern Sydney Local Health District (New South Wales) in Australia (project identifier: 2020/ETH02540). All participants are required to provide written consent after being informed about the trial and the process evaluation. The results of this process evaluation will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER: Australian New Zealand Clinical Trial Registry (ACTRN12621000091808); Universal Trial Number (U1111-1264-1689).


Spinal Cord Injuries , Humans , Australia , Belgium , England , Ethics Committees, Research , Randomized Controlled Trials as Topic , Pragmatic Clinical Trials as Topic
5.
Spinal Cord ; 61(9): 521-527, 2023 09.
Article En | MEDLINE | ID: mdl-37414835

STUDY DESIGN: Protocol for a multi-centre randomised controlled trial (the SCI-MT trial). OBJECTIVES: To determine whether 10 weeks of intensive motor training enhances neurological recovery in people with recent spinal cord injury (SCI). SETTING: Fifteen spinal injury units in Australia, Scotland, England, Italy, Netherlands, Norway, and Belgium. METHODS: A pragmatic randomised controlled trial will be undertaken. Two hundred and twenty people with recent SCI (onset in the preceding 10 weeks, American Spinal Injuries Association Impairment Scale (AIS) A lesion with motor function more than three levels below the motor level on one or both sides, or an AIS C or D lesion) will be randomised to receive either usual care plus intensive motor training (12 h of motor training per week for 10 weeks) or usual care alone. The primary outcome is neurological recovery at 10 weeks, measured with the Total Motor Score from the International Standards for Neurological Classification of SCI. Secondary outcomes include global measures of motor function, ability to walk, quality of life, participants' perceptions about ability to perform self-selected goals, length of hospital stay and participants' impressions of therapeutic benefit at 10 weeks and 6 months. A cost-effectiveness study and process evaluation will be run alongside the trial. The first participant was randomised in June 2021 and the trial is due for completion in 2025. CONCLUSIONS: The findings of the SCI-MT Trial will guide recommendations about the type and dose of inpatient therapy that optimises neurological recovery in people with SCI. TRIAL REGISTRATION: ACTRN12621000091808 (1.2.2021).


Spinal Cord Injuries , Humans , Quality of Life , Treatment Outcome , Recovery of Function , Walking , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
6.
J Clin Med ; 12(2)2023 Jan 05.
Article En | MEDLINE | ID: mdl-36675371

BACKGROUND: Although stroke survivors can benefit from robotic gait rehabilitation, stationary robot-assisted gait training needs further investigation. In this paper, we investigated the efficacy of this approach (with an exoskeleton or an end-effector robot) in comparison to the conventional overground gait training in subacute stroke survivors. METHODS: In a multicenter controlled clinical trial, 89 subacute stroke survivors conducted twenty sessions of robot-assisted gait training (Robotic Group) or overground gait training (Control Group) in addition to the standard daily therapy. The robotic training was performed with an exoskeleton (RobotEXO-group) or an end-effector (RobotEND-group). Clinical outcomes were assessed before (T0) and after (T1) the treatment. The walking speed during the 10-Meter Walk Test (10 MWT) was the primary outcome of this study, and secondary outcomes were the 6-Minute Walk Test (6 MWT), Timed Up and Go test (TUG), and the modified Barthel Index (mBI). RESULTS: The main characteristics assessed in the Robotic and Control groups did not differ at baseline. A significant benefit was detected from the 10 MWT in the Robotic Group at the end of the study period (primary endpoint). A benefit was also observed from the following parameters: 6 MWT, TUG, and mBI. Moreover, patients belonging to the Robot Group outperformed the Control Group in gait speed, endurance, balance, and ADL. The RobotEND-group improved their walking speed more than the RobotEXO-group. CONCLUSION: The stationary robot-assisted training improved walking ability better than the conventional training in subacute stroke survivors. These results suggest that people with subacute stroke may benefit from Robot-Assisted training in potentiating gait speed and endurance. Our results also support that end-effector robots would be superior to exoskeleton robots for improving gait speed enhancement.

7.
J Neuroeng Rehabil ; 20(1): 5, 2023 01 14.
Article En | MEDLINE | ID: mdl-36639665

BACKGROUND: Brain-Computer Interfaces (BCI) promote upper limb recovery in stroke patients reinforcing motor related brain activity (from electroencephalogaphy, EEG). Hybrid BCIs which include peripheral signals (electromyography, EMG) as control features could be employed to monitor post-stroke motor abnormalities. To ground the use of corticomuscular coherence (CMC) as a hybrid feature for a rehabilitative BCI, we analyzed high-density CMC networks (derived from multiple EEG and EMG channels) and their relation with upper limb motor deficit by comparing data from stroke patients with healthy participants during simple hand tasks. METHODS: EEG (61 sensors) and EMG (8 muscles per arm) were simultaneously recorded from 12 stroke (EXP) and 12 healthy participants (CTRL) during simple hand movements performed with right/left (CTRL) and unaffected/affected hand (EXP, UH/AH). CMC networks were estimated for each movement and their properties were analyzed by means of indices derived ad-hoc from graph theory and compared among groups. RESULTS: Between-group analysis showed that CMC weight of the whole brain network was significantly reduced in patients during AH movements. The network density was increased especially for those connections entailing bilateral non-target muscles. Such reduced muscle-specificity observed in patients was confirmed by muscle degree index (connections per muscle) which indicated a connections' distribution among non-target and contralateral muscles and revealed a higher involvement of proximal muscles in patients. CMC network properties correlated with upper-limb motor impairment as assessed by Fugl-Meyer Assessment and Manual Muscle Test in patients. CONCLUSIONS: High-density CMC networks can capture motor abnormalities in stroke patients during simple hand movements. Correlations with upper limb motor impairment support their use in a BCI-based rehabilitative approach.


Brain-Computer Interfaces , Stroke Rehabilitation , Stroke , Humans , Electroencephalography , Upper Extremity , Electromyography
8.
Healthcare (Basel) ; 10(10)2022 Oct 14.
Article En | MEDLINE | ID: mdl-36292479

Stress urinary incontinence (SUI) represents one of the most common subtypes of urinary incontinence (UI) reported by women. Studies have shown an association of SUI with nonspecific low back pain (NSLBP). The primary aim of the present study was to explore the long-term effects of a combined treatment of manual techniques and pelvic floor muscle (PFM) training in women suffering from SUI associated with NSLBP. The secondary aim was to evaluate which manual approach combined with PFM rehabilitation is more effective in improving symptoms related to SUI and in reducing pain perception related to NSLBP. Twenty-six patients suffering from SUI associated with chronic NSLBP were randomly assigned to one of two groups: the postural rehabilitation group (PRg) or the spinal mobilization group (SMg). Both groups performed a manual approach combined with PFM rehabilitation. All patients were evaluated before the treatment (T0), after 10 sessions (T1) and after 30 days from the end of the treatment (T2). The results showed an improvement in both groups in all of the investigated outcomes. Combining manual therapy and PFM training within the same therapy session may be useful for improving both SUI and NSLBP and increasing the quality of life of women suffering from SUI associated with NSLBP.

9.
Brain Sci ; 12(6)2022 May 31.
Article En | MEDLINE | ID: mdl-35741599

Strokes often lead to a deficit in motor control that contributes to a reduced balance function. Impairments in the balance function severely limit the activities of daily living (ADL) in stroke survivors. The present systematic review and meta-analysis primarily aims to explore the efficacy of overground robot-assisted gait training (o-RAGT) on balance recovery in individuals with stroke. In addition, the efficacy on ADL is also investigated. This systematic review identified nine articles investigating the effects of o-RAGT on balance, four of which also assessed ADL. The results of the meta-analysis suggest that o-RAGT does not increase balance and ADL outcomes more than conventional therapy in individuals after stroke. The data should not be overestimated due to the low number of studies included in the meta-analysis and the wide confidence intervals. Subgroup analyses to investigate the influence of participant's characteristics and training dosage were not performed due to lack of data availability. Further well-designed randomized controlled trials are needed to investigate the efficacy of o-RAGT on balance in individuals with stroke.

10.
NeuroRehabilitation ; 51(2): 213-230, 2022.
Article En | MEDLINE | ID: mdl-35723118

BACKGROUND: Balance is a crucial function of basic Activities of Daily Living (ADL) and is often considered the priority in Spinal Cord Injury (SCI) patients' rehabilitation. Technological devices have been developed to support balance assessment and training, ensuring an earlier, intensive, and goal-oriented motor therapy. OBJECTIVE: The aim of this systematic review is to explore the technology-assisted strategies to assess and rehabilitate balance function in persons with SCI. METHODS: A systematic review was conducted in the databases PubMed, Scopus, IEEE Xplore, Cochrane Library, and Embase. Full reports on Randomized Clinical Trials (RCTs) of parallel-group or cross-over design and non-RCTs were included according to the following criteria: i) publication year from 1990 to 2021; ii) balance considered as a primary or secondary outcome; iii) population of individuals with SCI with age over 18 years old, regardless of traumatic or non-traumatic lesions, Time Since Injury, lesion level, Asia Impairment Scale score and gender. The methodological quality was determined for each included study according to the recognized Downs and Black (D&B) tool. RESULTS: Nineteen articles met the inclusion criteria and were included in the analysis. Four articles focused on balance assessment while 15 targeted rehabilitation interventions to improve balance by using Treadmill-Based Devices (TBD), OverGround Devices (OGD) and Tilt Table Devices (TTD). Statistically significant effects on balance can be found in TBD subcategory, in the hip-knee guidance subcategory of OGD and in the study of TTD category. CONCLUSION: Although different studies reported positive effects, improvements due to technology-assisted rehabilitation were not greater than those obtained by means of other rehabilitation therapies. The heterogeneity, low methodological quality, and the small number of the studies included do not allow general conclusions about the usefulness of technology-assisted balance assessment and training in individuals with SCI, even if significant improvements have been reported in some studies.


Neurological Rehabilitation , Spinal Cord Injuries , Adolescent , Exercise Test , Humans , Physical Therapy Modalities , Spinal Cord Injuries/rehabilitation , Technology
11.
J Neuroeng Rehabil ; 19(1): 27, 2022 03 15.
Article En | MEDLINE | ID: mdl-35292044

Overground powered lower limb exoskeletons (EXOs) have proven to be valid devices in gait rehabilitation in individuals with spinal cord injury (SCI). Although several articles have reported the effects of EXOs in these individuals, the few reviews available focused on specific domains, mainly walking. The aim of this systematic review is to provide a general overview of the effects of commercial EXOs (i.e. not EXOs used in military and industry applications) for medical purposes in individuals with SCI. This systematic review was conducted following the PRISMA guidelines and it referred to MED-LINE, EMBASE, SCOPUS, Web of Science and Cochrane library databases. The studies included were Randomized Clinical Trials (RCTs) and non-RCT based on EXOs intervention on individuals with SCI. Out of 1296 studies screened, 41 met inclusion criteria. Among all the EXO studies, the Ekso device was the most discussed, followed by ReWalk, Indego, HAL and Rex devices. Since 14 different domains were considered, the outcome measures were heterogeneous. The most investigated domain was walking, followed by cardiorespiratory/metabolic responses, spasticity, balance, quality of life, human-robot interaction, robot data, bowel functionality, strength, daily living activity, neurophysiology, sensory function, bladder functionality and body composition/bone density domains. There were no reports of negative effects due to EXOs trainings and most of the significant positive effects were noted in the walking domain for Ekso, ReWalk, HAL and Indego devices. Ekso studies reported significant effects due to training in almost all domains, while this was not the case with the Rex device. Not a single study carried out on sensory functions or bladder functionality reached significance for any EXO. It is not possible to draw general conclusions about the effects of EXOs usage due to the lack of high-quality studies as addressed by the Downs and Black tool, the heterogeneity of the outcome measures, of the protocols and of the SCI epidemiological/neurological features. However, the strengths and weaknesses of EXOs are starting to be defined, even considering the different types of adverse events that EXO training brought about. EXO training showed to bring significant improvements over time, but whether its effectiveness is greater or less than conventional therapy or other treatments is still mostly unknown. High-quality RCTs are necessary to better define the pros and cons of the EXOs available today. Studies of this kind could help clinicians to better choose the appropriate training for individuals with SCI.


Exoskeleton Device , Robotic Surgical Procedures , Robotics , Spinal Cord Injuries , Humans , Spinal Cord Injuries/rehabilitation , Walking/physiology
12.
Healthcare (Basel) ; 10(2)2022 Jan 21.
Article En | MEDLINE | ID: mdl-35206825

BACKGROUND: Neurogenic bowel dysfunction (NBD) indicates bowel dysfunction due to a lack of nervous control after a central nervous system lesion. Bowel symptoms, such as difficulties with evacuation, constipation, abdominal pain and swelling, are experienced commonly among individuals with spinal cord injury (SCI). Consequentially, individuals with SCI experience a general dissatisfaction with the lower perceived quality of life (QoL). Several studies have demonstrated the positive effects of manual therapies on NBD, including Osteopathic Manipulative Treatment (OMT). This study aimed to explore OMT effects on NBD in individuals with SCI compared with Manual Placebo Treatment (MPT). METHODS: The study was a double-blind randomized controlled trial composed of three phases, each one lasting 30 days (i: NBD/drugs monitoring; ii: four OMT/MPT sessions; iii: NBD/drug monitoring and follow-up evaluation). RESULTS: the NBD scale, the QoL on worries and concerns sub-questionnaire, and the perception of abdominal swelling and constipation significantly improved after treatments compared to baseline only for individuals who underwent OMT. CONCLUSION: These preliminary results showed positive effects of OMT on bowel function and QoL in individuals with SCI, but further studies are needed to confirm our results.

13.
Front Neurol ; 12: 700472, 2021.
Article En | MEDLINE | ID: mdl-34295303

Background: Crutches are the most common walking aids prescribed to improve mobility in subjects with central nervous system (CNS) lesions. To increase adherence to the appropriate level of crutch usage, providing load-related auditory feedback (aFB) may be a useful approach. We sensorized forearm crutches and developed a custom software to provide aFB information to both user and physical therapist (PhT). Aim: Evaluate aFB effects on load control during gait by a self-controlled case series trial. Methods: A single experimental session was conducted enrolling 12 CNS lesioned participants. Load on crutch was recorded during 10 Meter Walk Test performed with and without aFB. In both cases, crutch load data, and gait speed were recorded. Usability and satisfaction questionnaires were administered to participants and PhTs involved. Results: Reliable data were obtained from eight participants. Results showed that compared to the no FB condition, aFB yielded a significant reduction in the mean load on the crutches during gait (p = 0.001). The FB did not influence gait speed or fatigue (p > 0.05). The experience questionnaire data indicated a positive experience regarding the use of aFB from both participants' and PhTs' perspectives. Conclusion: aFB significantly improves compliance with crutch use and does not affect gait speed or fatigue by improving the load placed on crutches. The FB is perceived by users as helpful, safe, and easy to learn, and does not interfere with attention or concentration while walking. Furthermore, the PhTs consider the system to be useful, easy to learn and reliable.

14.
Disabil Rehabil ; 43(11): 1576-1584, 2021 06.
Article En | MEDLINE | ID: mdl-31588811

PURPOSE: To examine physiological responses and perceived exertion during robot-assisted treadmill walking in non-ambulatory stroke survivors; compare these outcomes with aerobic exercise recommendations; and investigate the effect of robotic assistance. MATERIALS AND METHODS: Twelve non-ambulatory stroke survivors (67 ± 11 years-old, 84 ± 38 d post-stroke) participated. Subjects walked three times 20 min (1 session/day) in the Lokomat: once with conventional exercise parameters, once with 60% robotic assistance and once with 100% robotic assistance. Gas exchange and heart rate were monitored continuously. Perceived exertion was assessed every 3 min during walking. RESULTS: During conventional robot-assisted treadmill walking, net perceived exertion (0-14 scale) significantly increased between minute 6 (median = 2, interquartile range = 4) and 18 (median = 5, interquartile range = 4). Net physiological responses did not significantly change over time. Throughout exercise, percentage of predicted heart rate reserve was significantly below the 40% threshold (medians: 11-14%) and percentage of predicted maximum heart rate reached the 55% threshold (medians: 59-60%). Perceived exertion reached the 11-point threshold halfway. Net physiological responses and perceived exertion did not significantly differ between 60% and 100% robotic assistance. CONCLUSIONS: The assistance level that non-ambulatory stroke survivors require at their highest tolerable walking speed seems too high to sufficiently stress the cardiorespiratory system during robot-assisted treadmill walking.Implications for rehabilitationThe exercise intensity of 20-minute conventional robot-assisted treadmill walking can be low, and might be too low to challenge the cardiorespiratory system of non-ambulatory stroke survivors.Lowering the level of robotic assistance from 100% to 60% does not seem to increase the exercise intensity of 20-minute robot-assisted treadmill walking.


Robotics , Stroke Rehabilitation , Stroke , Aged , Exercise Test , Humans , Middle Aged , Physical Exertion , Survivors , Walking
15.
Healthcare (Basel) ; 10(1)2021 Dec 24.
Article En | MEDLINE | ID: mdl-35052192

BACKGROUND: Osteopathic manipulative treatment (OMT) is a patient-centred, whole-body intervention aimed at enhance the person's self-regulation. OMT interventions are focused on somatic dysfunctions (SD) that can be defined as an altered regulative function associated with inflammatory signs palpable in the body framework in different body regions. The conceptual model that sustains SD, as well as its usefulness for the osteopathic profession, is still being discussed by the osteopathic community. Understanding the role and the application of SD is the aim of this scoping review. METHODS: A literature search was carried out through the main biomedical databases: Pubmed (Medline), Cochrane, Central (Cochrane), Embase, PEDro and Scopus. Grey literature was considered via Google Scholar and the Osteopathic Research Web. The review was prepared by referring to the "Preferred Reporting Items for Systematic reviews and Meta-Analysis extension for Scoping Reviews" (PRISMA-ScR). RESULTS: A total of 37,279 records were identified through database searching and other sources. After the duplicates were removed, 27,023 titles and abstracts were screened. A total of 1495 full-text articles were assessed for eligibility. The qualitative synthesis included 280 studies. CONCLUSIONS: Treating SD is an important part of osteopathic practice that varies from country to country. SD should be considered as a clinical value that assists in the clinical assessment and guides the decision-making process of osteopathic practitioners. Further studies should be designed to better understand why and how to choose the different assessment and intervention modalities to approach SD and to evaluate new osteopathic models.

16.
Brain Sci ; 10(12)2020 Dec 11.
Article En | MEDLINE | ID: mdl-33322255

The effects of osteopathic manipulative treatment (OMT) on functional brain connectivity in healthy adults is missing in the literature. To make up for this lack, we applied advanced network analysis methods to analyze resting state functional magnetic resonance imaging (fMRI) data, after OMT and Placebo treatment (P) in 30 healthy asymptomatic young participants randomized into OMT and placebo groups (OMTg; Pg). fMRI brain activity measures, performed before (T0), immediately after (T1) and three days after (T2) OMT or P were used for inferring treatment effects on brain circuit functional organization. Repeated measures ANOVA and post-hoc analysis demonstrated that Right Precentral Gyrus (F (2, 32) = 5.995, p < 0.005) was more influential over the information flow immediately after the OMT, while decreased betweenness centrality in Left Caudate (F (2, 32) = 6.496, p < 0.005) was observable three days after. Clustering coefficient showed a distinct time-point and group effect. At T1, reduced neighborhood connectivity was observed after OMT in the Left Amygdala (L-Amyg) (F (2, 32) = 7.269, p < 0.005) and Left Middle Temporal Gyrus (F (2, 32) = 6.452, p < 0.005), whereas at T2 the L-Amyg and Vermis-III (F (2, 32) = 6.772, p < 0.005) increased functional interactions. Data demonstrated functional connectivity re-arrangement after OMT.

17.
BMC Neurol ; 20(1): 254, 2020 Jun 27.
Article En | MEDLINE | ID: mdl-32593293

BACKGROUND: Stroke is a leading cause of long-term disability. Cost-effective post-stroke rehabilitation programs for upper limb are critically needed. Brain-Computer Interfaces (BCIs) which enable the modulation of Electroencephalography (EEG) sensorimotor rhythms are promising tools to promote post-stroke recovery of upper limb motor function. The "Promotoer" study intends to boost the application of the EEG-based BCIs in clinical practice providing evidence for a short/long-term efficacy in enhancing post-stroke hand functional motor recovery and quantifiable indices of the participants response to a BCI-based intervention. To these aims, a longitudinal study will be performed in which subacute stroke participants will undergo a hand motor imagery (MI) training assisted by the Promotoer system, an EEG-based BCI system fully compliant with rehabilitation requirements. METHODS: This longitudinal 2-arm randomized controlled superiority trial will include 48 first ever, unilateral, subacute stroke participants, randomly assigned to 2 intervention groups: the BCI-assisted hand MI training and a hand MI training not supported by BCI. Both interventions are delivered (3 weekly session; 6 weeks) as add-on regimen to standard intensive rehabilitation. A multidimensional assessment will be performed at: randomization/pre-intervention, 48 h post-intervention, and at 1, 3 and 6 month/s after end of intervention. Primary outcome measure is the Fugl-Meyer Assessment (FMA, upper extremity) at 48 h post-intervention. Secondary outcome measures include: the upper extremity FMA at follow-up, the Modified Ashworth Scale, the Numeric Rating Scale for pain, the Action Research Arm Test, the National Institute of Health Stroke Scale, the Manual Muscle Test, all collected at the different timepoints as well as neurophysiological and neuroimaging measures. DISCUSSION: We expect the BCI-based rewarding of hand MI practice to promote long-lasting retention of the early induced improvement in hand motor outcome and also, this clinical improvement to be sustained by a long-lasting neuroplasticity changes harnessed by the BCI-based intervention. Furthermore, the longitudinal multidimensional assessment will address the selection of those stroke participants who best benefit of a BCI-assisted therapy, consistently advancing the transfer of BCIs to a best clinical practice. TRIAL REGISTRATION: Name of registry: BCI-assisted MI Intervention in Subacute Stroke (Promotoer). TRIAL REGISTRATION NUMBER: NCT04353297 ; registration date on the ClinicalTrial.gov platform: April, 15/2020.


Brain-Computer Interfaces , Randomized Controlled Trials as Topic , Stroke Rehabilitation/methods , Adult , Electroencephalography/methods , Female , Humans , Imagination/physiology , Longitudinal Studies , Male , Middle Aged , Motor Activity/physiology , Recovery of Function/physiology , Stroke Rehabilitation/instrumentation , Upper Extremity/physiopathology
18.
Front Syst Neurosci ; 13: 49, 2019.
Article En | MEDLINE | ID: mdl-31572134

Somatosensory information arising from the foot has an important role in posture as well as visual and vestibular cues. Our hypothesis is that the effects of prolonged stimulation are greater than those of short stimulation and that varying the plantar location can affect postural control. Forty healthy participants were recruited and randomly assigned to four different plantar location groups: Lateral Insert (LI), Medial Insert (MI), Disharmonious Insert (DI), and Central Insert (CI). An instrumental assessment was performed before the plantar stimulation (T0), immediately after the positioning of the inserts (T1), and after 7 days of daily stimulation (T7). A follow-up was performed 15 days after (T15). The following stabilometric parameters were considered for both open eyes (OE) and closed eyes (CE) conditions: length of the sway (L) of the Center of Pressure (CoP); CoP maximum movements in the medio-lateral (X), and antero-posterior directions (Y). Comparing the effects of different plantar insert locations, the MI and CI groups were significantly different in the follow-up measures at T15, specifically for closed eyes measures. When we compared measures across time within each location group, CI group increased measures of X and Y data at T7 compared to other assessment times (T0, T1, and T15). In both MI and LI groups, L was significantly reduced, and X significantly increased at the T7 assessment compared to the T0, T1, and T15 assessments. The prolonged use of exteroceptive plantar stimulation and the location of plantar inserts may have a role to reshape postural control.

19.
J Neuroeng Rehabil ; 16(1): 95, 2019 07 23.
Article En | MEDLINE | ID: mdl-31337400

BACKGROUND: Add-on robot-mediated therapy has proven to be more effective than conventional therapy alone in post-stroke gait rehabilitation. Such robot-mediated interventions routinely use also visual biofeedback tools. A better understanding of biofeedback content effects when used for robotic locomotor training may improve the rehabilitation process and outcomes. METHODS: This randomized cross-over pilot trial aimed to address the possible impact of different biofeedback contents on patients' performance and experience during Lokomat training, by comparing a novel biofeedback based on online biological electromyographic information (EMGb) versus the commercial joint torque biofeedback (Rb) in sub-acute non ambulatory patients. 12 patients were randomized into two treatment groups, A and B, based on two different biofeedback training. For both groups, study protocol consisted of 12 Lokomat sessions, 6 for each biofeedback condition, 40 min each, 3 sessions per week of frequency. All patients performed Lokomat trainings as an add-on therapy to the conventional one that was the same for both groups and consisted of 40 min per day, 5 days per week. The primary outcome was the Modified Ashworth Spasticity Scale, and secondary outcomes included clinical, neurological, mechanical, and personal experience variables collected before and after each biofeedback training. RESULTS: Lokomat training significantly improved gait/daily living activity independence and trunk control, nevertheless, different effects due to biofeedback content were remarked. EMGb was more effective to reduce spasticity and improve muscle force at the ankle, knee and hip joints. Robot data suggest that Rb induces more adaptation to robotic movements than EMGb. Furthermore, Rb was perceived less demanding than EMGb, even though patient motivation was higher for EMGb. Robot was perceived to be effective, easy to use, reliable and safe: acceptability was rated as very high by all patients. CONCLUSIONS: Specific effects can be related to biofeedback content: when muscular-based information is used, a more direct effect on lower limb spasticity and muscle activity is evidenced. In a similar manner, when biofeedback treatment is based on joint torque data, a higher patient compliance effect in terms of force exerted is achieved. Subjects who underwent EMGb seemed to be more motivated than those treated with Rb.


Biofeedback, Psychology/instrumentation , Gait Disorders, Neurologic/rehabilitation , Robotics/instrumentation , Robotics/methods , Stroke Rehabilitation/instrumentation , Aged , Biomechanical Phenomena , Cross-Over Studies , Electromyography/instrumentation , Female , Gait Disorders, Neurologic/etiology , Humans , Male , Middle Aged , Self-Help Devices , Stroke/complications , Stroke Rehabilitation/methods , Torque
20.
Front Physiol ; 10: 403, 2019.
Article En | MEDLINE | ID: mdl-31024346

Osteopathic Manipulative Treatment (OMT) is a therapeutic approach aimed at enhancing the body's self-regulation focusing on somatic dysfunctions correction. Despite evidence of OMT effectiveness, the underlying neurophysiological mechanisms, as well as blood perfusion effects, are still poorly understood. The study aim was to address OMT effects on cerebral blood flow (CBF) in asymptomatic young volunteers as measured by Magnetic Resonance Arterial Spin Labeling (ASL) method. Thirty blinded participants were randomized to OMT or placebo, and evaluated with an MRI protocol before manual intervention (T0), immediately after (T1), and 3 days later (T2). After T0 MRI, participants received 45 min of OMT, focused on correcting whole body somatic dysfunctions, or placebo manual treatment, consisting of passive touches in a protocolled order. After treatment, participants completed a de-blinding questionnaire about treatment perception. Results show significant differences due to treatment only for the OMT group (OMTg): perfusion decreased (compared to T0) in a cluster comprising the left posterior cingulate cortex (PCC) and the superior parietal lobule, while increased at T2 in the contralateral PCC. Furthermore, more than 60% of participants believed they had undergone OMT. The CBF modifications at T2 suggest that OMT produced immediate but reversible effects on CBF.

...