Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(3): e4898, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358135

RESUMEN

Structural genomics consortia established that protein crystallization is the primary obstacle to structure determination using x-ray crystallography. We previously demonstrated that crystallization propensity is systematically related to primary sequence, and we subsequently performed computational analyses showing that arginine is the most overrepresented amino acid in crystal-packing interfaces in the Protein Data Bank. Given the similar physicochemical characteristics of arginine and lysine, we hypothesized that multiple lysine-to-arginine (KR) substitutions should improve crystallization. To test this hypothesis, we developed software that ranks lysine sites in a target protein based on the redundancy-corrected KR substitution frequency in homologs. This software can be run interactively on the worldwide web at https://www.pxengineering.org/. We demonstrate that three unrelated single-domain proteins can tolerate 5-11 KR substitutions with at most minor destabilization, and, for two of these three proteins, the construct with the largest number of KR substitutions exhibits significantly enhanced crystallization propensity. This approach rapidly produced a 1.9 Å crystal structure of a human protein domain refractory to crystallization with its native sequence. Structures from Bulk KR-substituted domains show the engineered arginine residues frequently make hydrogen-bonds across crystal-packing interfaces. We thus demonstrate that Bulk KR substitution represents a rational and efficient method for probabilistic engineering of protein surface properties to improve crystallization.


Asunto(s)
Lisina , Proteínas , Humanos , Lisina/química , Cristalización , Proteínas/genética , Aminoácidos/química , Cristalografía por Rayos X , Arginina/metabolismo
2.
J Chem Theory Comput ; 19(11): 3346-3358, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37195939

RESUMEN

γ-Modified peptide nucleic acids (γPNAs) serve as potential therapeutic agents against genetic diseases. Miniature poly(ethylene glycol) (miniPEG) has been reported to increase solubility and binding affinity toward genetic targets, yet details of γPNA structure and dynamics are not understood. Within our work, we parameterized missing torsional and electrostatic terms for the miniPEG substituent on the γ-carbon atom of the γPNA backbone in the CHARMM force field. Microsecond timescale molecular dynamics simulations were carried out on six miniPEG-modified γPNA duplexes from NMR structures (PDB ID: 2KVJ). Three NMR models for the γPNA duplex (PDB ID: 2KVJ) were simulated as a reference for structural and dynamic changes captured for the miniPEG-modified γPNA duplex. Principal component analysis performed on the γPNA backbone atoms identified a single isotropic conformational substate (CS) for the NMR simulations, whereas four anisotropic CSs were identified for the ensemble of miniPEG-modified γPNA simulations. The NMR structures were found to have a 23° helical bend toward the major groove, consistent with our simulated CS structure of 19.0°. However, a significant difference between simulated methyl- and miniPEG-modified γPNAs involved the opportunistic invasion of miniPEG through the minor and major groves. Specifically, hydrogen bond fractional analysis showed that the invasion was particularly prone to affect the second G-C base pair, reducing the Watson-Crick base pair hydrogen bond by 60% over the six simulations, whereas the A-T base pairs decreased by only 20%. Ultimately, the invasion led to base stack reshuffling, where the well-ordered base stacking was reduced to segmented nucleobase stacking interactions. Our 6 µs timescale simulations indicate that duplex dissociation suggests the onset toward γPNA single strands, consistent with the experimental observation of decreased aggregation. To complement the insight of miniPEG-modified γPNA structure and dynamics, the new miniPEG force field parameters allow for further exploration of such modified γPNA single strands as potential therapeutic agents against genetic diseases.


Asunto(s)
Ácidos Nucleicos de Péptidos , Emparejamiento Base , Ácidos Nucleicos de Péptidos/química , Conformación Molecular , Simulación de Dinámica Molecular , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA