Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Environ Res ; 94(8): e10772, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35965329

RESUMEN

High-rate activated sludge (HRAS) systems suffer from high variability of effluent quality, clarifier performance, and carbon capture. This study proposed a novel control approach using bioflocculation boundaries for wasting control strategy to enhance effluent quality and stability while still meeting carbon capture goals. The bioflocculation boundaries were developed based on the oxygen uptake rate (OUR) ratio between contactor and stabilizer (feast/famine) in a high-rate contact stabilization (CS) system and this OUR ratio was used to manipulate the wasting setpoint. Increased oxidation of carbon or decreased wasting was applied when OUR ratio was <0.52 or >0.95 to overcome bioflocculation limitation and maintain effluent quality. When no bioflocculation limitations (OUR ratio within 0.52-0.95) were detected, carbon capture was maximized. The proposed control concept was shown for a fully automated OUR-based control system as well as for a simplified version based on direct waste flow control. For both cases, significant improvements in effluent suspended solids level and stability (<50-mg TSS/L), solids capture over the clarifier (>90%), and COD capture (median of 32%) were achieved. This study shows how one can overcome the process instability of current HRAS systems and provide a path to achieve more reliable outcomes. PRACTITIONER POINTS: Online bioflocculation boundaries (upper and lower limit) were defined by the OUR ratio between contactor and stabilizer (feast/famine). To maintain effluent quality, carbon oxidation was minimized when bioflocculation was not limited (0.52-0.95 OUR ratio) and increased otherwise. A fully automated control concept was piloted, also a more simplified semiautomated option was proposed. Wasting control strategies with bioflocculation boundaries improved effluent quality while meeting carbon capture goals. Bioflocculation boundaries are easily applied to current wasting control schemes applied to HRAS systems (i.e., MLSS, SRT, and OUR controls).


Asunto(s)
Reactores Biológicos , Eliminación de Residuos Líquidos , Carbono , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA