Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 741, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874869

RESUMEN

Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/ß-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.


Asunto(s)
Neoplasias Gastrointestinales , Ficocianina , Humanos , Ficocianina/farmacología , Ficocianina/uso terapéutico , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Enfermedades Gastrointestinales/tratamiento farmacológico , Enfermedades Gastrointestinales/metabolismo
2.
Neurochem Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38918332

RESUMEN

Neuropsychiatric and neurological disorders pose a significant global health burden, highlighting the need for innovative therapeutic approaches. Fingolimod (FTY720), a common drug to treat multiple sclerosis, has shown promising efficacy against various neuropsychiatric and neurological disorders. Fingolimod exerts its neuroprotective effects by targeting multiple cellular and molecular processes, such as apoptosis, oxidative stress, neuroinflammation, and autophagy. By modulating Sphingosine-1-Phosphate Receptor activity, a key regulator of immune cell trafficking and neuronal function, it also affects synaptic activity and strengthens memory formation. In the hippocampus, fingolimod decreases glutamate levels and increases GABA levels, suggesting a potential role in modulating synaptic transmission and neuronal excitability. Taken together, fingolimod has emerged as a promising neuroprotective agent for neuropsychiatric and neurological disorders. Its broad spectrum of cellular and molecular effects, including the modulation of apoptosis, oxidative stress, neuroinflammation, autophagy, and synaptic plasticity, provides a comprehensive therapeutic approach for these debilitating conditions. Further research is warranted to fully elucidate the mechanisms of action of fingolimod and optimize its use in the treatment of neuropsychiatric and neurological disorders.

3.
Cell Mol Neurobiol ; 44(1): 28, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461204

RESUMEN

Clearance of accumulated protein aggregates is one of the functions of autophagy. Recently, a clearer understanding of non-coding RNAs (ncRNAs) functions documented that ncRNAs have important roles in several biological processes associated with the development and progression of neurodegenerative disorders. Subtypes of ncRNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), are commonly dysregulated in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Dysregulation of these non-coding RNAs has been associated with inhibition or stimulation of autophagy. Decreased miR-124 led to decreased/increased autophagy in experimental model of Alzheimer and Parkinson diseases. Increased BACE1-AS showed enhanced autophagy in Alzheimer disease by targeting miR-214-3p, Beclin-1, LC3-I/LC3-II, p62, and ATG5. A significant increase in NEAT1led to stimulated autophagy in experimental model of PD by targeting PINK1, LC3-I, LC3-II, p62 and miR-374c-5p. In addition, increased BDNF-AS and SNHG1 decreased autophagy in MPTP-induced PD by targeting miR-125b-5p and miR-221/222, respectively. The upregulation of circNF1-419 and circSAMD4A resulted in an increased autophagy by regulating Dynamin-1 and miR-29c 3p, respectively. A detailed discussion of miRNAs, circRNAs, and lncRNAs in relation to their autophagy-related signaling pathways is presented in this study.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , ARN Largo no Codificante , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Enfermedad de Alzheimer/genética , Ácido Aspártico Endopeptidasas , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Autofagia/genética
4.
Neurochem Res ; 49(3): 583-596, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38114727

RESUMEN

Neurological disorders are a major group of non-communicable diseases affecting quality of life. Non-Coding RNAs (ncRNAs) have an important role in the etiology of neurological disorders. In studies on the genesis of neurological diseases, aquaporin 4 (AQP4) expression and activity have both been linked to ncRNAs. The upregulation or downregulation of several ncRNAs leads to neurological disorder progression by targeting AQP4. The role of ncRNAs and AQP4 in neurological disorders is discussed in this review.


Asunto(s)
MicroARNs , Enfermedades del Sistema Nervioso , Humanos , Acuaporina 4/genética , Acuaporina 4/metabolismo , Calidad de Vida , ARN no Traducido/metabolismo , Enfermedades del Sistema Nervioso/genética , Regulación hacia Abajo
5.
Pathol Res Pract ; 252: 154914, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37992506

RESUMEN

Long non-coding RNAs (lncRNAs) can be utilized as prognostic indicators of gastric cancer since they can affect several cancer-related processes. Coumarin is a natural product with some useful anti-cancer properties. Here, we measured the expression of selected lncRNAs (RuPAR, SNHG6, CASC11, and their targets, miR-340-5p, p21, E-cadherin, and CDK1) in AGS gastric cancer cells treated with coumarin. MTT test has been utilized for assessing the AGS cells' cell viability after exposure to coumarin. The expression of the lncRNAs (RuPAR, SNHG6, and CASC11) and miR-340-5p was evaluated via qRT-PCR. Western blot analysis has been utilized to determine changes in p21, E-cadherin, and CDK1 expression. Coumarin decreased AGS viability in a dose-dependent manner. The coumarin treated cells had lower levels of the mRNAs known to be targets of lncRNAs SNHG6 and CASC11 compared to control. Additionally, the coumarin group had increased levels of lncRNA RuPAR expression when compared with the control group. Some lncRNA targets, including p21, E-cadherin, and CDK1, showed lower expression in the coumarin group compared to the control by Western blotting. Coumarin could be a promising pharmacological candidate to be included in gastric cancer treatment regimens because it modulates lncRNAs and their targets.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , ARN Largo no Codificante/metabolismo , Proliferación Celular/genética , MicroARNs/genética , Cadherinas/genética , Cumarinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA