Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 80(22): 4946-4959, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32998996

RESUMEN

Chromosomal instability (CIN) comprises continual gain and loss of chromosomes or parts of chromosomes and occurs in the majority of cancers, often conferring poor prognosis. Because of a scarcity of functional studies and poor understanding of how genetic or gene expression landscapes connect to specific CIN mechanisms, causes of CIN in most cancer types remain unknown. High-grade serous ovarian carcinoma (HGSC), the most common subtype of ovarian cancer, is the major cause of death due to gynecologic malignancy in the Western world, with chemotherapy resistance developing in almost all patients. HGSC exhibits high rates of chromosomal aberrations and knowledge of causative mechanisms would represent an important step toward combating this disease. Here we perform the first in-depth functional characterization of mechanisms driving CIN in HGSC in seven cell lines that accurately recapitulate HGSC genetics. Multiple mechanisms coexisted to drive CIN in HGSC, including elevated microtubule dynamics and DNA replication stress that can be partially rescued to reduce CIN by low doses of paclitaxel and nucleoside supplementation, respectively. Distinct CIN mechanisms indicated relationships with HGSC-relevant therapy including PARP inhibition and microtubule-targeting agents. Comprehensive genomic and transcriptomic profiling revealed deregulation of various genes involved in genome stability but were not directly predictive of specific CIN mechanisms, underscoring the importance of functional characterization to identify causes of CIN. Overall, we show that HGSC CIN is complex and suggest that specific CIN mechanisms could be used as functional biomarkers to indicate appropriate therapy. SIGNIFICANCE: These findings characterize multiple deregulated mechanisms of genome stability that lead to CIN in ovarian cancer and demonstrate the benefit of integrating analysis of said mechanisms into predictions of therapy response.


Asunto(s)
Inestabilidad Cromosómica , Cistadenocarcinoma Seroso/genética , Neoplasias Ováricas/genética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Inestabilidad Cromosómica/fisiología , Segregación Cromosómica , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/patología , Variaciones en el Número de Copia de ADN , Daño del ADN , Replicación del ADN/fisiología , Femenino , Inestabilidad Genómica , Humanos , Microtúbulos/fisiología , Clasificación del Tumor , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
2.
Cell Rep ; 23(11): 3366-3380, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29898405

RESUMEN

A common assumption is that human chromosomes carry equal chances of mis-segregation during compromised cell division. Human chromosomes vary in multiple parameters that might generate bias, but technological limitations have precluded a comprehensive analysis of chromosome-specific aneuploidy. Here, by imaging specific centromeres coupled with high-throughput single-cell analysis as well as single-cell sequencing, we show that aneuploidy occurs non-randomly following common treatments to elevate chromosome mis-segregation. Temporary spindle disruption leads to elevated mis-segregation and aneuploidy of a subset of chromosomes, particularly affecting chromosomes 1 and 2. Unexpectedly, we find that a period of mitotic delay weakens centromeric cohesion and promotes chromosome mis-segregation and that chromosomes 1 and 2 are particularly prone to suffer cohesion fatigue. Our findings demonstrate that inherent properties of individual chromosomes can bias chromosome mis-segregation and aneuploidy rates, with implications for studies on aneuploidy in human disease.


Asunto(s)
Segregación Cromosómica , Cromosomas Humanos/metabolismo , Anafase , Aneuploidia , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Segregación Cromosómica/efectos de los fármacos , Cromosomas Humanos/genética , Humanos , Hibridación Fluorescente in Situ , Cinetocoros/metabolismo , Nocodazol/farmacología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Análisis de la Célula Individual
3.
Nat Commun ; 8(1): 150, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28751710

RESUMEN

Human chromosomes are captured along microtubule walls (lateral attachment) and then tethered to microtubule-ends (end-on attachment) through a multi-step end-on conversion process. Upstream regulators that orchestrate this remarkable change in the plane of kinetochore-microtubule attachment in human cells are not known. By tracking kinetochore movements and using kinetochore markers specific to attachment status, we reveal a spatially defined role for Aurora-B kinase in retarding the end-on conversion process. To understand how Aurora-B activity is counteracted, we compare the roles of two outer-kinetochore bound phosphatases and find that BubR1-associated PP2A, unlike KNL1-associated PP1, plays a significant role in end-on conversion. Finally, we uncover a novel role for Aurora-B regulated Astrin-SKAP complex in ensuring the correct plane of kinetochore-microtubule attachment. Thus, we identify Aurora-B as a key upstream regulator of end-on conversion in human cells and establish a late role for Astrin-SKAP complex in the end-on conversion process.Human chromosomes are captured along microtubule walls and then tethered to microtubule-ends through a multi-step end-on conversion process. Here the authors show that Aurora-B regulates end-on conversion in human cells and establish a late role for Astrin-SKAP complex in the end-on conversion process.


Asunto(s)
Aurora Quinasa B/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Transducción de Señal , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Immunoblotting , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Unión Proteica , Interferencia de ARN , Imagen de Lapso de Tiempo/métodos
4.
Rev Sci Instrum ; 86(1): 013707, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25638090

RESUMEN

We provide an evaluation for an electrically tunable lens (ETL), combined with a microscope system, from the viewpoint of tracking intracellular protein complexes. We measured the correlation between the quantitative axial focus shift and the control current for ETL, and determined the stabilization time for refocusing to evaluate the electrical focusing behaviour of our system. We also confirmed that the change of relative magnification by the lens and associated resolution does not influence the ability to find intracellular targets. By applying the ETL system to observe intracellular structures and protein complexes, we confirmed that this system can obtain 10 nm order z-stacks, within video rate, while maintaining the quality of images and that this system has sufficient optical performance to detect the molecules.


Asunto(s)
Equipos y Suministros Eléctricos , Espacio Intracelular/metabolismo , Lentes , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Proteínas/metabolismo , Simulación por Computador , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Microtúbulos/metabolismo , Reconocimiento de Normas Patrones Automatizadas , Grabación en Video/instrumentación , Grabación en Video/métodos
5.
Science ; 347(6218): 185-188, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25574025

RESUMEN

XRCC4 and XLF are two structurally related proteins that function in DNA double-strand break (DSB) repair. Here, we identify human PAXX (PAralog of XRCC4 and XLF, also called C9orf142) as a new XRCC4 superfamily member and show that its crystal structure resembles that of XRCC4. PAXX interacts directly with the DSB-repair protein Ku and is recruited to DNA-damage sites in cells. Using RNA interference and CRISPR-Cas9 to generate PAXX(-/-) cells, we demonstrate that PAXX functions with XRCC4 and XLF to mediate DSB repair and cell survival in response to DSB-inducing agents. Finally, we reveal that PAXX promotes Ku-dependent DNA ligation in vitro and assembly of core nonhomologous end-joining (NHEJ) factors on damaged chromatin in cells. These findings identify PAXX as a new component of the NHEJ machinery.


Asunto(s)
Antígenos Nucleares/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Línea Celular Tumoral , Cristalografía por Rayos X , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Autoantígeno Ku , Estructura Secundaria de Proteína , Interferencia de ARN
6.
Biol Open ; 4(2): 155-69, 2015 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-25596275

RESUMEN

Microtubules execute diverse mitotic events that are spatially and temporally separated; the underlying regulation is poorly understood. By combining drug treatments, large-scale immunoprecipitation and mass spectrometry, we report the first comprehensive map of mitotic phase-specific protein interactions of the microtubule-end binding protein, EB1. EB1 interacts with some, but not all, of its partners throughout mitosis. We show that the interaction of EB1 with Astrin-SKAP complex, a key regulator of chromosome segregation, is enhanced during prometaphase, compared to anaphase. We find that EB1 and EB3, another EB family member, can interact directly with SKAP, in an SXIP-motif dependent manner. Using an SXIP defective mutant that cannot interact with EB, we uncover two distinct pools of SKAP at spindle microtubules and kinetochores. We demonstrate the importance of SKAP's SXIP-motif in controlling microtubule growth rates and anaphase onset, without grossly disrupting spindle function. Thus, we provide the first comprehensive map of temporal changes in EB1 interactors during mitosis and highlight the importance of EB protein interactions in ensuring normal mitosis.

7.
Open Biol ; 4(6): 130108, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24898139

RESUMEN

Chromosomal instability can arise from defects in chromosome-microtubule attachment. Using a variety of drug treatments, we show that TAO1 kinase is required for ensuring the normal congression of chromosomes. Depletion of TAO1 reduces the density of growing interphase and mitotic microtubules in human cells, showing TAO1's role in controlling microtubule dynamics. We demonstrate the aneugenic nature of chromosome-microtubule attachment defects in TAO1-depleted cells using an error-correction assay. Our model further strengthens the emerging paradigm that microtubule regulatory pathways are important for resolving erroneous kinetochore-microtubule attachments and maintaining the integrity of the genome, regardless of the spindle checkpoint status.


Asunto(s)
Inestabilidad Cromosómica , Cromosomas/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Cromosomas/genética , Células HeLa , Humanos , Proteínas Serina-Treonina Quinasas , Células Tumorales Cultivadas
8.
Cell Cycle ; 12(16): 2643-55, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23907121

RESUMEN

Spindle orientation defines the plane of cell division and, thereby, the spatial position of all daughter cells. Here, we develop a live cell microscopy-based methodology to extract spindle movements in human epithelial cell lines and study how spindles are brought to a pre-defined orientation. We show that spindles undergo two distinct regimes of movements. Spindles are first actively rotated toward the cells' long-axis and then maintained along this pre-defined axis. By quantifying spindle movements in cells depleted of LGN, we show that the first regime of rotational movements requires LGN that recruits cortical dynein. In contrast, the second regime of movements that maintains spindle orientation does not require LGN, but is sensitive to 2ME2 that suppresses microtubule dynamics. Our study sheds first insight into spatially defined spindle movement regimes in human cells, and supports the presence of LGN and dynein independent cortical anchors for astral microtubules.


Asunto(s)
Células Epiteliales/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Huso Acromático/fisiología , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Immunoblotting , Microscopía por Video/métodos , ARN Interferente Pequeño/genética , Rotación
9.
Open Biol ; 2(11): 120132, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23226599

RESUMEN

The microtubule polymer grows and shrinks predominantly from one of its ends called the 'plus-end'. Plus-end regulation during interphase is well understood. However, mitotic regulation of plus-ends is only beginning to be understood in mammalian cells. During mitosis, the plus-ends are tethered to specialized microtubule capture sites. At these sites, plus-end-binding proteins are loaded and unloaded in a regulated fashion. Proper tethering of plus-ends to specialized sites is important so that the microtubule is able to translate its growth and shrinkage into pushing and pulling forces that move bulky subcellular structures. We discuss recent advances on how mitotic plus-ends are tethered to distinct subcellular sites and how plus-end-bound proteins can modulate the forces that move subcellular structures. Using end binding 1 (EB1) as a prototype plus-end-binding protein, we highlight the complex network of plus-end-binding proteins and their regulation through phosphorylation. Finally, we develop a speculative 'moving platform' model that illustrates the plus-end's role in distinguishing correct versus incorrect microtubule interactions.


Asunto(s)
Células Eucariotas/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/fisiología , Mitosis/fisiología , Animales , Regulación de la Expresión Génica , Interfase/fisiología , Cinetocoros/fisiología , Proteínas Asociadas a Microtúbulos/genética , Fosforilación , Unión Proteica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...