Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Synth Syst Biotechnol ; 9(4): 667-683, 2024 Dec.
Article En | MEDLINE | ID: mdl-38817826

Clostridioides difficile (C. difficile), as the major pathogen of diarrhea in healthcare settings, has become increasingly prevalent within community populations, resulting in significant morbidity and mortality. However, the therapeutic options for Clostridioides difficile infection (CDI) remain limited, and as of now, no authorized vaccine is available to combat this disease. Therefore, the development of a novel vaccine against C. difficile is of paramount importance. In our study, the complete proteome sequences of 118 strains of C. difficile were downloaded and analyzed. We found four antigenic proteins that were highly conserved and can be used for epitope identification. We designed two vaccines, WLcd1 and WLcd2, that contain the ideal T-cell and B-cell epitopes, adjuvants, and the pan HLA DR-binding epitope (PADRE) sequences. The biophysical and chemical assessments of these vaccine candidates indicated that they were suitable for immunogenic applications. Molecular docking analyses revealed that WLcd1 bonded with higher affinity to Toll-like receptors (TLRs) than WLcd2. Furthermore, molecular dynamics (MD) simulations, performed using Gmx_MMPBSA v1.56, confirmed the binding stability of WLcd1 with TLR2 and TLR4. The preliminary findings suggested that this multi-epitope vaccine could be a promising candidate for protection against CDI; however, experimental studies are necessary to confirm these predictions.

2.
Int Immunopharmacol ; 135: 112242, 2024 May 20.
Article En | MEDLINE | ID: mdl-38772296

The emergence of Cryptococcus neoformans has posed an undeniable burden to many regions worldwide, with its strains mainly entering the lungs through the respiratory tract and spreading throughout the body. Limitations of drug regimens, such as high costs and limited options, have directed our attention toward the promising field of vaccine development. In this study, the subtractive proteomics approach was employed to select target proteins from databases that can accurately cover serotypes A and D of the Cryptococcus neoformans. Further, two multi-epitope vaccines consisting of T and B cell epitopes were demonstrated that they have good structural stability and could bind with immune receptor to induce desired immune responses in silico. After further evaluation, these vaccines show the potential for large-scale production and applicability to the majority of the population of the world. In summary, these two vaccines have been theoretically proven to combat Cryptococcus neoformans infections, awaiting further experimental validation of their actual protective effects.

3.
J Biomol Struct Dyn ; : 1-18, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38450722

Over the past year, an unexpected surge in human monkeypox (hMPX) cases has been observed. This outbreak differs from previous ones, displaying distinct epidemiological characteristics and transmission patterns, believed to be influenced by a newly emerging monkeypox virus (MPXV) lineage. Notably, this emerging MPXV lineage has exhibited several non-synonymous mutations, some of which are linked to immunomodulatory activities and antigenic characteristics that aid in host detection. However, specific treatments or vaccines for human monkeypox are currently lacking. Hence, we aim to develop a multi-epitope mRNA vaccine by using immunoinformatics approaches against the MPXV, particularly its emerging variants. Six proteins (A29L, A35R, B6R, M1R, H3L, and E8L) were chosen for epitope and mutation site identification. Seventeen top-performing epitopes and eight epitopes containing mutation sites were selected and combined with adjuvants, the PADRE sequence, and linkers for vaccine development. The molecular and physical properties of the designed vaccine (WLmpx) were favorable. Immunological characteristics of WLmpx were assessed through molecular docking, molecular dynamics (MD) simulations, and immune simulations. Finally, the vaccine sequence was utilized to formulate an mRNA-based vaccine. The informatics-based predicted results indicated that the designed vaccine exhibits significant potential in eliciting high-level humoral and cellular immune responses, but further validation through in vivo and vitro studies is warranted.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; : 1-17, 2023 Sep 28.
Article En | MEDLINE | ID: mdl-37771176

Endometrial cancer (EC) is one of the most common cancers of the female reproductive system. Multi-epitope vaccine may be a promising and effective strategy against EC. In this study, we designed a novel multi-epitope vaccine based on the antigenic proteins PRAME and TMPRSS4 using immunoinformatics and bioinformatics approaches. After a rigorous selection process, 14 cytotoxic T lymphocyte (CTL) epitopes, 6 helper T lymphocyte (HTL) epitopes, and 8 B cell epitopes (BCEs) were finally selected for vaccine construction. To enhance the immunogenicity of the vaccine candidate, the pan HLA DR-binding epitope was included in the vaccine design as an adjuvant. The final vaccine construct had 455 amino acids and a molecular weight of 49.8 kDa, and was predicted to cover 95.03% of the total world population. Docking analysis showed that there were 10 hydrogen bonds and 19 hydrogen bonds in the vaccine-HLA-A*02:01 and vaccine-HLA-DRB1*01:01 complexes, respectively, indicating that the vaccine has a good affinity to MHC molecules. This was further supported by molecular dynamics (MD) simulation. Immune simulation showed that the designed vaccine was able to induce higher levels of immune cell activity, with the secretion of numerous cytokines. The codon adaptation index (CAI) value and GC content of the optimised codon sequences of the vaccine were 0.986 and 54.43%, respectively, indicating that the vaccine has the potential to be highly expressed. The in silico analysis suggested that the designed vaccine may provide a novel therapeutic option for the individualised treatment of EC patients in the future.Communicated by Ramaswamy H. Sarma.

5.
J Biomol Struct Dyn ; : 1-13, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37526203

Chikungunya virus (CHIKV), a type A virus borne by mosquitoes that can cause major clinical manifestations including rash, fever and debilitating arthritis, grown into a reemerging serious public health issue. Currently, there is no licensed therapy or vaccine available for CHIKV, although the most promising form of treatment appears to be immunotherapy. Neutralizing antibodies for CHIKV can provide high protection for all CHIKV strains, as well as other alphaviruses. Development of a protective vaccine may be an effective strategy to prevent the outbreak of CHIKV and provide protection for travelers. In this study, we designed a multi-epitope vaccine with a 543-amino-acid structure based on the E1, E2 and capsid proteins of CHIKV, including 6 CTL epitopes, 6 HTL epitopes, 12 linear B epitopes, along with the adjuvant ß-defensin III. All T-cell epitopes were docked with their corresponding MHC alleles to validate their effect on inducing immune responses, and the vaccine's sequence was proven to have acceptable physicochemical properties. Further, the developed vaccine was docked with TLR3 and TLR8, both of which play an important role in recognizing RNA viruses. Basic analyses of the docked complexes and molecular dynamic simulations revealed that the vaccine interacted strongly with TLRs. Immunological simulations indicated that the vaccine could induce both cellular and humoral immunity. Hopefully, this proposed vaccine structure can serve as a viable candidate against CHIKV infection.Communicated by Ramaswamy H. Sarma.

6.
PLoS One ; 18(6): e0286688, 2023.
Article En | MEDLINE | ID: mdl-37294745

INTRODUCTION: There may be inaccuracies in hepatic steatosis in past research assessing the relationship between bone metabolism and liver steatosis. The goal of the current research was to look at the associations between bone mineral density (BMD) and the hepatic steatosis and fibrosis as detected by vibration-controlled transient elastography (VCTE) in teenagers in the United States. METHODS: Weighted multiple linear regression models and smoothed curve fitting were used to investigate the association between BMD and the degree of hepatic steatosis and fibrosis in adolescents. RESULTS: In 829 adolescents aged 12-19 years we found a negative association between total BMD and CAP (controlled attenuation parameter) [-32.46 (-58.98, -9.05)] and a significant positive association between lumbar BMD and LSM (liver stiffness measurement) [1.35 (0.19, 2.51)]. The inverted U-shaped relationships were founded between total BMD, lumbar BMD, pelvis BMD, and CAP with inflection points of 221.22 dB/m, 219.88 dB/m, and 216.02 dB/m, respectively. CONCLUSIONS: In adolescents, higher BMD is significantly associated with lower levels of hepatic steatosis and higher levels of liver stiffness.


Elasticity Imaging Techniques , Non-alcoholic Fatty Liver Disease , Adolescent , Humans , United States , Liver/pathology , Non-alcoholic Fatty Liver Disease/pathology , Nutrition Surveys , Bone Density , Vibration , Liver Cirrhosis/pathology
7.
J Control Release ; 358: 579-590, 2023 06.
Article En | MEDLINE | ID: mdl-37172908

Tumor hypoxia and high glutathione (GSH) expression promote regulatory T cell (Treg) infiltration and maintain its immunosuppressive function, which significantly reduces the response rate of cancer immunotherapy. Here, we developed an immunomodulatory nano-formulation (FEM@PFC) to reverse Treg-mediated immunosuppression by redox regulation in the tumor microenvironment (TME). Oxygen carried in perfluorocarbon (PFC) was delivered to the TME, thus relieving the hypoxic condition and inhibiting Treg infiltration. More importantly, GSH depletion by the prodrug efficiently restricted the Foxp3 expression and immunosuppressive function of Tregs, thus breaking the shackles of tumor immunosuppression. Additionally, the supplement of oxygen cooperated with the consumption of GSH to enhance the irradiation-induced immunogenic cell death and subsequent dendritic cell (DC) maturation, thereby efficiently promoting the activation of effector T cells and restricting the immunosuppression of Tregs. Collectively, the FEM@PFC nano-formulation reverses Treg-mediated immunosuppression and regulates the redox balance in the TME to boost anti-tumor immunity and prolong the survival of tumor-bearing mice, which provides a new immunoregulatory strategy from the perspective of redox modulation.


Neoplasms , T-Lymphocytes, Regulatory , Animals , Mice , Immunosuppression Therapy , Immune Tolerance , Immunotherapy , Oxygen , Tumor Microenvironment
8.
J Orthop Surg Res ; 18(1): 290, 2023 Apr 10.
Article En | MEDLINE | ID: mdl-37038167

INTRODUCTION: The weight-adjusted waist circumference index (WWI) is a novel obesity evaluation indicator that appears to be superior to body mass index (BMI) and waist circumference (WC) in evaluating muscle and fat mass. The purpose of this study was to investigate the association between WWI and fractures among adults. METHODS: In this cross-sectional study, multivariate logistic regression and smoothed curve fitting were used to investigate linear and nonlinear associations between WWI and fractures, based on data from 28,679 adult participants in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. RESULTS: After adjusting for all covariates, the prevalence of hip/wrist/spine fractures among all participants was 1.09%, 8.87%, and 1.97%, respectively. A 1-unit increase in WWI was associated with a 5% increase in the odds of hip fractures [1.05 (1.01, 1.10)], and a 9% increase in the odds of spine fractures [1.09 (1.06, 1.13)], but not with the prevalence of wrist fractures [0.97 (0.94, 1.06)]. CONCLUSIONS: Higher WWI was associated with an increased prevalence of hip fracture and spine fracture, but not wrist fracture.


Hip Fractures , Spinal Fractures , Adult , Humans , Nutrition Surveys , Risk Factors , Cross-Sectional Studies , Body Mass Index , Hip Fractures/epidemiology
9.
Front Nutr ; 10: 1132234, 2023.
Article En | MEDLINE | ID: mdl-36960203

Introduction: The mechanism by which socioeconomic status (SES) affects bone mineral density (BMD) remains unknown, and body mass index (BMI) may be a potential mediator. The purpose of this study was to investigate whether BMI mediates the relationship between SES [education level and poverty income ratio (PIR)] and lumbar BMD and the proportion it mediates. Methods: This study included a total of 11,075 adults from the National Health and Nutrition Examination Survey (NHANES). Lumbar BMD was measured at the lumbar spine by dual-energy X-ray absorptiometry (DXA). Multivariate linear regression and smoothing curve fitting were used to investigate the relationship between SES and lumbar BMD. Mediator analysis was used to investigate the proportion of BMI mediating the association between SES and BMD. Results: In the fully adjusted model, there was a positive correlation between SES and BMD (education level: ß = 0.025, 95% CI: 0.005, 0.045; PIR: ß = 0.007, 95% CI: 0.002, 0.011). Mediation analysis showed that BMI mediated the relationship between PIR, education level, and lumbar BMD with a range of mediation proportions from 13.33 to 18.20%. Conclusion: BMI partially mediated the positive association between SES and BMD, and this association may be largely mediated by factors other than BMI.

10.
Front Immunol ; 14: 1112816, 2023.
Article En | MEDLINE | ID: mdl-36993967

Background: Since May 2022, cases of monkeypox, a zoonotic disease caused by the monkeypox virus (MPXV), have been increasingly reported worldwide. There are, however, no proven therapies or vaccines available for monkeypox. In this study, several multi-epitope vaccines were designed against the MPXV using immunoinformatics approaches. Methods: Three target proteins, A35R and B6R, enveloped virion (EV) form-derived antigens, and H3L, expressed on the mature virion (MV) form, were selected for epitope identification. The shortlisted epitopes were fused with appropriate adjuvants and linkers to vaccine candidates. The biophysical andbiochemical features of vaccine candidates were evaluated. The Molecular docking and molecular dynamics(MD) simulation were run to understand the binding mode and binding stability between the vaccines and Toll-like receptors (TLRs) and major histocompatibility complexes (MHCs). The immunogenicity of the designed vaccines was evaluated via immune simulation. Results: Five vaccine constructs (MPXV-1-5) were formed. After the evaluation of various immunological and physicochemical parameters, MPXV-2 and MPXV-5 were selected for further analysis. The results of molecular docking showed that the MPXV-2 and MPXV-5 had a stronger affinity to TLRs (TLR2 and TLR4) and MHC (HLA-A*02:01 and HLA-DRB1*02:01) molecules, and the analyses of molecular dynamics (MD) simulation have further confirmed the strong binding stability of MPXV-2 and MPXV-5 with TLRs and MHC molecules. The results of the immune simulation indicated that both MPXV-2 and MPXV-5 could effectively induce robust protective immune responses in the human body. Conclusion: The MPXV-2 and MPXV-5 have good efficacy against the MPXV in theory, but further studies are required to validate their safety and efficacy.


Monkeypox virus , Mpox (monkeypox) , Humans , Molecular Docking Simulation , Epitopes, T-Lymphocyte , Vaccines, Subunit
11.
Front Immunol ; 14: 1100188, 2023.
Article En | MEDLINE | ID: mdl-36845087

Background: Nocardia genus, a complex group of species classified to be aerobic actinomycete, can lead to severe concurrent infection as well as disseminated infection, typically in immunocompromised patients. With the expansion of the susceptible population, the incidence of Nocardia has been gradually growing, accompanied by increased resistance of the pathogen to existing therapeutics. However, there is no effective vaccine against this pathogen yet. In this study, a multi-epitope vaccine was designed against the Nocardia infection using reverse vaccinology combined with immunoinformatics approaches. Methods: First, the proteomes of 6 Nocardia subspecies Nocardia subspecies (Nocardia farcinica, Nocardia cyriacigeorgica, Nocardia abscessus, Nocardia otitidiscaviarum, Nocardia brasiliensis and Nocardia nova) were download NCBI (National Center for Biotechnology Information) database on May 1st, 2022 for the target proteins selection. The essential, virulent-associated or resistant-associated, surface-exposed, antigenic, non-toxic, and non-homologous with the human proteome proteins were selected for epitope identification. The shortlisted T-cell and B-cell epitopes were fused with appropriate adjuvants and linkers to construct vaccines. The physicochemical properties of the designed vaccine were predicted using multiple online servers. The Molecular docking and molecular dynamics (MD) simulation were performed to understand the binding pattern and binding stability between the vaccine candidate and Toll-like receptors (TLRs). The immunogenicity of the designed vaccines was evaluated via immune simulation. Results: 3 proteins that are essential, virulent-associated or resistant-associated, surface-exposed, antigenic, non-toxic, and non-homologous with the human proteome were selected from 218 complete proteome sequences of the 6 Nocardia subspecies epitope identification. After screening, only 4 cytotoxic T lymphocyte (CTL) epitopes, 6 helper T lymphocyte (HTL) epitopes, and 8 B cell epitopes that were antigenic, non-allergenic, and non-toxic were included in the final vaccine construct. The results of molecular docking and MD simulation showed that the vaccine candidate has a strong affinity for TLR2 and TLR4 of the host and the vaccine-TLR complexes were dynamically stable in the natural environment. The results of the immune simulation indicated that the designed vaccine had the potential to induce strong protective immune responses in the host. The codon optimization and cloned analysis showed that the vaccine was available for mass production. Conclusion: The designed vaccine has the potential to stimulate long-lasting immunity in the host, but further studies are required to validate its safety and efficacy.


Nocardia , Vaccinology , Humans , Molecular Docking Simulation , Vaccinology/methods , Proteome , Vaccines, Subunit , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Molecular Dynamics Simulation
12.
J Biomol Struct Dyn ; 41(20): 10525-10545, 2023 12.
Article En | MEDLINE | ID: mdl-36533395

Staphylococcus aureus is an extraordinarily versatile pathogen, which is currently the most common cause of nosocomial and community infections. Considering that increased antibiotic resistance may hasten the spread of S. aureus, developing an effective vaccine can possibly aid in its control. The RNA vaccine coding immunodominance epitopes from bacteria provide a potential method to induce T and B cell immune responses by translating them into cells. Furthermore, using bioinformatics to create circular RNA vaccines can ensure that the translation of the vaccine is potent and durable. In this study, 7 cytotoxic T lymphocyte (CTL) epitopes, 4 helper T lymphocyte (HTL) epitopes, and 15 B cell epitopes from 6 proteins that are closely associated with the S. aureus virulence and invasion and critical to natural immune responses were mapped. To verify their interactions, all epitopes were docked with the corresponding MHC alleles. The final vaccine was composed of 26 epitopes and the adjuvant ß-defencin, and a disulfide bond was also introduced to improve its stability. After the prediction of structure and characteristics, the developed vaccine was docked with TLR2 and TLR4, which induce immunological responses in S. aureus infection. According to the molecular dynamic simulation, the vaccine might interact strongly with TLRs. Meanwhile, it performed well in immunological simulation and population coverage prediction. Finally, the vaccine was converted into a circular RNA using a series of helper sequences to aid in vaccine circulation translation. Hopefully, this proposed structure will be proven to serve a viable vaccine against S. aureus.Communicated by Ramaswamy H. Sarma.


RNA, Circular , Staphylococcus aureus , Staphylococcus aureus/genetics , RNA, Circular/genetics , Epitopes, T-Lymphocyte , Epitopes, B-Lymphocyte , Molecular Dynamics Simulation , Molecular Docking Simulation , Computational Biology/methods , Vaccines, Subunit
13.
Hum Vaccin Immunother ; 19(3): 2293300, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38172569

Human metapneumovirus (HMPV) is one of the main pathogens causing severe respiratory infections in children, as a common cause of immunodeficiency-related deaths in children and elderly individuals, the prevalence of HMPV has been showing an increasing trend during the last years. However, no vaccines or effective treatment plans are available currently. In this present, based on candidate proteins highly associated with viral virulence and has promising protective potential, we screened for immunodominant cytotoxic T cells, helper T cells, and Linear B-cell epitopes from the most promising candidate Fusion protein, together with G, SH, M, and M2. All epitopes were predicted to have strong antigenicity by Vaxijen and pose no potential toxicity, allergenicity, or hormonology to human proteins by Toxinpred, Allerpred, and Blast analysis, meanwhile, high conservancy is demanded to cover different subtypes. adjuvants ß-defensin II and Pam2Cys was attached with EAAAK linkers to improve vaccine's efficiency. Then, calculation of physicochemical properties proved the protein vaccine as a product can stably exist in the human body. Besides, we assessed the docking between the vaccine and immune receptors to evaluate its ability to stimulate immune responses, and the dynamic simulation further confirmed that the vaccine can tightly bind with immune receptors, which approved that the construction has the potential to induce strong humoral and cellular immune response. Finally, the vaccine was constructed into a multi-epitope mRNA vaccine, the immune simulations suggest that this is a vaccine candidate for controlling HMPV infection.


Metapneumovirus , Respiratory Tract Infections , Child , Humans , Aged , Metapneumovirus/genetics , mRNA Vaccines , Epitopes, B-Lymphocyte/genetics , T-Lymphocytes, Cytotoxic , Epitopes, T-Lymphocyte , Computational Biology , Vaccines, Subunit
14.
Diabetes Metab Syndr Obes ; 15: 3555-3564, 2022.
Article En | MEDLINE | ID: mdl-36411787

Background: This study aimed to distinguish the risk factors for type 2 diabetes mellitus (T2DM) and construct a predictive model of T2DM in Japanese adults with abdominal obesity. Methods: This study was a post hoc analysis. A total of 2012 individuals with abdominal obesity were included and randomly divided into training and validation groups at 70% (n = 1518) and 30% (n = 494), respectively. The LASSO method was used to screen for risk variables for T2DM, and to construct a nomogram incorporating the selected risk factors in the training group. We used the C-index, calibration plot, decision curve analysis, and cumulative hazard analysis to test the discrimination, calibration and clinical significance of the nomogram. Results: In the training cohort, the C-index and receiver operating characteristic were 0.819 and the 95% CI was 0.776-0.858, with a specificity and sensitivity of 77% and 74.68%, respectively. In the validation cohort, the C-index was 0.853; sensitivity and specificity were 77.6% and 88.1%, respectively. The decision curve analysis showed that the model's prediction was effective and cumulative hazard analysis demonstrated that the high-risk score group was more likely to develop T2DM than the low-risk score group. Conclusion: This nomogram may help clinicians screen abdominal obesity at a high risk for T2DM.

15.
Adv Healthc Mater ; 11(22): e2201166, 2022 11.
Article En | MEDLINE | ID: mdl-36113849

Tumor metastasis contributes to high cancer mortality. Tumor cells in lymph nodes (LNs) are difficult to eliminate but underlie uncontrollable systemic metastasis. The CC chemokine receptor 7 (CCR7) is overexpressed in tumor cells and interacts with CC chemokine ligand 21 (CCL21) secreted from LNs, potentiating their lymphatic migration. Here, a site-specific polyplex is developed to block the CCR7-CCL21 signal and kill tumor cells toward LNs, greatly limiting their lymphatic infiltration. A CCR7-targeting small interfering RNA (siCCR7) is condensed by mPEG-poly-(lysine) with chlorin e6 (Ce6) modification (PPLC) to form PPLC/siCCR7. The knockdown of CCR7 by siCCR7 in tumor cells significantly reduced their response on CCL21 and LN tropism. Additionally, photodynamic therapy-mediated immune activation precisely targets and kills tumor cells released from the primary foci before they reaches the LNs, reducing the number of tumor cells entering the LNs. Consequently, the PPLC/siCCR7 polyplexes inhibited up to 92% of lung metastasis in 4T1 tumor bearing mice and reduced tumor cell migration to LNs by up to 80%. This site-specific strategy optimized anti-metastasis efficacy and promotes the clinical translational development of anti-metastatic therapy.


Chemokine CCL21 , T-Lymphocytes , Mice , Animals , Receptors, CCR7/genetics , Receptors, CCR7/metabolism , Lymphatic Metastasis , Chemokine CCL21/genetics , Chemokine CCL21/metabolism , Down-Regulation , T-Lymphocytes/metabolism , Cell Movement , Cell Line, Tumor
16.
Genes (Basel) ; 13(8)2022 07 29.
Article En | MEDLINE | ID: mdl-36011271

Metamorphosis is a critical stage in the adaptive development of amphibians from aquatic to terrestrial animals. Metamorphosis of the Chinese giant salamander is mainly manifested by the loss of external gills with consequent changes in the respiratory pattern. The loss of the external gill is regulated by the pathway of apoptosis in which caspase genes are the key factors. This study cloned and expressed the caspase 3/7/8/9 genes of the Chinese giant salamander. The main results were as follows: the complete open reading frames (ORFs) were 885 bp, 960 bp, 1461 bp and 1279 bp, respectively; caspase 3/7/8/9 genes all contained the CASc domain, and most of the motifs were located in CASc domain; and caspase 8 possessed two DED structural domains and caspase 9 possessed a CARD structural domain. Furthermore, results from the tissue distribution analysis indicated that caspase 3/7/8/9 genes were all significantly expressed in the external gill, and at 9 and 10 months of age (MOA), which is the peak time for the loss, the EXPRESSION level of caspase 3/7/8/9 genes was obviously high, which was consistent with the histological result. Moreover, the loss of external gills of the Chinese giant salamander may result from activation of both the apoptosis-related death receptor pathway and the mitochondrial pathway. Finally, it was discovered that thyroid hormone (TH) treatment could both advance the time point at which the external gills of the Chinese giant salamander began to degenerate and shorten this process. Interestingly, at the peak of its metamorphosis (9 MOA), the Chinese giant salamander further accelerated the metamorphosis rate of TH treatment, which suggested a promotive effect on the loss of external gills via the superimposition of the exogenous TH and caspase genes. The study of caspase genes in this experiment was conducive to understanding the mechanism of external gill loss in the Chinese giant salamander, as well as improving our understanding of the metamorphosis development of some Caudata species.


Gills , Urodela , Animals , Caspase 3/genetics , Caspase 3/metabolism , Caspase 9/metabolism , China , Gills/metabolism , Urodela/genetics
18.
Front Immunol ; 13: 887061, 2022.
Article En | MEDLINE | ID: mdl-35720363

Clostridium difficile (C.difficile) is an exclusively anaerobic, spore-forming, and Gram-positive pathogen that is the most common cause of nosocomial diarrhea and is becoming increasingly prevalent in the community. Because C. difficile is strictly anaerobic, spores that can survive for months in the external environment contribute to the persistence and diffusion of C. difficile within the healthcare environment and community. Antimicrobial therapy disrupts the natural intestinal flora, allowing spores to develop into propagules that colonize the colon and produce toxins, thus leading to antibiotic-associated diarrhea and pseudomembranous enteritis. However, there is no licensed vaccine to prevent Clostridium difficile infection (CDI). In this study, a multi-epitope vaccine was designed using modern computer methods. Two target proteins, CdeC, affecting spore germination, and fliD, affecting propagule colonization, were chosen to construct the vaccine so that it could simultaneously induce the immune response against two different forms (spore and propagule) of C. difficile. We obtained the protein sequences from the National Center for Biotechnology Information (NCBI) database. After the layers of filtration, 5 cytotoxic T-cell lymphocyte (CTL) epitopes, 5 helper T lymphocyte (HTL) epitopes, and 7 B-cell linear epitopes were finally selected for vaccine construction. Then, to enhance the immunogenicity of the designed vaccine, an adjuvant was added to construct the vaccine. The Prabi and RaptorX servers were used to predict the vaccine's two- and three-dimensional (3D) structures, respectively. Additionally, we refined and validated the structures of the vaccine construct. Molecular docking and molecular dynamics (MD) simulation were performed to check the interaction model of the vaccine-Toll-like receptor (TLR) complexes, vaccine-major histocompatibility complex (MHC) complexes, and vaccine-B-cell receptor (BCR) complex. Furthermore, immune stimulation, population coverage, and in silico molecular cloning were also conducted. The foregoing findings suggest that the final formulated vaccine is promising against the pathogen, but more researchers are needed to verify it.


Clostridioides difficile , Diarrhea , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , Molecular Docking Simulation , Vaccines, Subunit
19.
Orthop J Sports Med ; 9(3): 2325967120979990, 2021 Mar.
Article En | MEDLINE | ID: mdl-33748303

BACKGROUND: High morbidity has been reported regarding Achilles tendon (AT) injuries, and the upward trend has accelerated since the mid-1990s. A chronic Achilles tendon rupture usually results from a neglected or misdiagnosed acute rupture, and about one-fifth of acute AT ruptures are missed and lead to chronic AT rupture. Although many techniques have been described, there is no gold standard in the treatment of chronic AT ruptures. HYPOTHESIS: Endoscopically assisted, minimally invasive reconstruction for chronic AT rupture using a double-bundle flexor hallucis longus (FHL) tendon would result in improvement of the overall function, with a low rate of wound complications. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: Between May 2015 and November 2016, a total of 19 consecutive patients were enrolled and treated using endoscopically assisted, minimally invasive reconstruction for chronic AT rupture using a double-bundle FHL. The operative assessment comprised the Achilles Tendon Total Rupture Score, the American Orthopaedic Foot & Ankle Society score, the Victorian Institute of Sports Assessment-Achilles score, and a postoperative questionnaire. All postoperative complications were recorded. RESULTS: The mean follow-up time for all patients was 31 months (range, 20-42 months). According to the postoperative questionnaire, the result of surgery was excellent in 8 (42%) of 19 patients, good in 10 (53%), and fair in 1 (5%). All clinical outcome scores (mean ± SD) improved significantly after surgery: Achilles Tendon Total Rupture Score, 23.3 ± 10.3 vs 98.3 ± 9.2 (postoperatively vs preoperatively); American Orthopaedic Foot & Ankle Society, 52.1 ± 12.4 vs 97.5 ± 18.9; and Victorian Institute of Sports Assessment-Achilles, 23.4 ± 11.2 vs 95.7 ± 17.1 (P < .05). No complications with regard to wound healing or infection were noted. Twelve relatively young patients returned to preinjury activity levels, such as playing basketball or badminton, and the older patients were able to meet their daily needs, such as walking up stairs and jogging. CONCLUSION: Chronic AT ruptures were successfully treated via minimally invasive reconstruction using a double-bundle FHL, which provided excellent functional improvement. It is best suited for patients with complex requirements who are at high risk for wound complications.

...