Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Article En | MEDLINE | ID: mdl-38613749

PPG-CNTs-nZVI bead was synthesized by polyvinyl alcohol, pumice, carbon nanotube, and guar gum-nanoscale zero-valent iron to be applied on simultaneously removal of polycyclic aromatic hydrocarbons (PAHs; phenanthrene) and heavy metals (Pb2+) via adsorption. The individual and simultaneous removal efficiency of phenanthrene and Pb2+ using the PPG-CNTs-nZVI beads was evaluated with a range of initial concentrations of these two pollutants. The kinetics and isotherms of phenanthrene and Pb2+ adsorption by the PPG-CNTs-nZVI beads were also determined. The PPG-CNTs-nZVI beads show reasonably high phenanthrene adsorption capacities (up to 0.16 mg/g), and they absorbed 85% of the phenanthrene (initial concentration 0.5 mg/L) in 30 min. High Pb2+ adsorption capabilities were also demonstrated by the PPG-CNTs-nZVI beads (up to 11.6 mg/g). The adsorption fits the Langmuir model better than the Freundlich model. The adsorption still remained stable with various ionic strength circumstances and a wide pH range (2-5). Additionally, the co-adsorption of phenanthrene and Pb2+ by the PPG-CNTs-nZVI beads resulted in synergistic effects. Particularly, phenanthrene-Pb2+ complex formation via π-cation interactions demonstrated a greater affinity than phenanthrene or Pb2+ alone. The present findings suggest that PPG-CNTs-nZVI beads may be effective sorbents for the simultaneous removal of PAHs and heavy metals from contaminated waters.

2.
Sci Total Environ ; 930: 172642, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38670374

Understanding the removal of heavy metals (HMs) in permeable pavement systems is of great significance for controlling urban runoff pollution and optimizing structural design. However, few studies have systematically investigated the mechanism of permeable pavement systems in removing HMs from stormwater runoff. In this study, we adopted a hierarchical strategy to understand the efficiency of individual structural layers on HMs removal in a permeable interlocking concrete pavement (PICP) system. Experimental results illuminated that the surface layer exhibited the highest uptakes of HMs, which can remove up to 64 % of Pb2+, 50 % of Cu2+, 28 % of Cd2+ and 13 % of Zn2+. Meanwhile, as the rainfall return period increased, the removal rates of HMs in PICP was gradually decreased. In addition, batch experiments were conducted and the adsorption results were in accordance with the rainfall filtration experiments. More importantly, X-ray Photoelectron Spectroscopy (XPS) and leaching results were investigated to understand the HMs removal mechanism, which found that the ion exchange is the main mechanism in the surface layer to remove HMs, whereas the chemical adsorption play a crucial role in the base and sub-base layers. Overall, these findings provided new insights into the transport patterns of HMs in the internal structural layers of the PICP.

3.
Sci Total Environ ; 924: 171634, 2024 May 10.
Article En | MEDLINE | ID: mdl-38471585

In recent years, the escalating attention on Pharmaceutical and Personal Care Products (PPCPs) and Heavy Metals in urban stormwater runoff highlights the critical role of Road-deposited sediments (RDS) as a significant carrier for pollutant occurrence and transport in runoff. However, existing research has overlooked the composite characteristics of PPCPs and Heavy Metals, hampering a holistic understanding of their transformation in diverse forms within runoff. This limitation impedes the exploration of their subsequent migration and conversion properties, thereby obstructing coordinated strategies for the control of co-pollution in runoff. This study focuses on the typical PPCP sulfamethoxazole (SMX) and heavy metal Cu(II) to analyze their occurrence characteristics in the Runoff-RDS system. Kinetics and isotherm studies reveal that RDS effectively accumulates SMX and Cu(II), with both exhibiting rapid association with RDS in the early stages of runoff. The accumulation of SMX and Cu(II) accounts for over 80 % and 70 % of the total accumulation within the first 240 min and 60 min, respectively. Moreover, as runoff pH values decrease, the initially synergistic effect between the co-pollutant transforms into an antagonistic effect. In the composite system, varying pH values from 2.0 to 6.0 lead to an increase in SMX accumulation from 4.01 mg/kg to 6.19 mg/kg and Cu(II) accumulation from 0.43 mg/g to 3.39 mg/g. Compared to the single system, the composite system capacity for SMX and Cu(II) increases by 0.04 mg/kg and 0.33 mg/g at pH 4.0. However, at pH 3.0, the composite system capacity for SMX and Cu(II) decreases by 0.21 mg/kg and 0.36 mg/g, respectively. Protonation/deprotonation of SMX under different pH conditions influences electrostatic repulsion/attraction between SMX and RDS. The mechanism of RDS accumulation of SMX involves Electron Donor-Acceptor (EDA) interaction, hydrogen bond interaction, and Lewis acid-base interaction. Cu(II) enrichment on RDS includes surface complexation reaction, electrostatic interaction, and surface precipitation. Complex formation enhances the accumulation of both SMX and Cu(II) on RDS in runoff. This study elucidates the co-occurrence characteristics and mechanisms of SMX and Cu(II) co-pollution in runoff systems. The findings contribute valuable insights to understanding the existence patterns and mechanisms of co-pollution, providing a reference for investigating the migration and fate of co-pollutant in runoff. Moreover, these insights could offer guidance for the development of effective strategies to mitigate co-pollution in rainwater.

4.
Water Sci Technol ; 89(4): 945-961, 2024 Feb.
Article En | MEDLINE | ID: mdl-38423610

The occurrence and ecological risks of 16 polycyclic aromatic hydrocarbons (PAHs) in different types of urban road runoff in Beijing during two typical rainfall events were studied. The average concentration of PAHs in road runoff particulate was in the order of Guanyuanqiao Road (ring road, 15,175 ng/L) > Huayuanqiao Road (primary road, 4,792 ng/L) > Dongcheng Alley (alley, 4,774 ng/L) > Nansihuan Viaduct (viaduct, 770 ng/L), much higher than dissolved PAHs. The total concentration of ∑16PAHs decreased with runoff scouring. Rainfall conditions and the accumulation of PAHs in the early rainfall period show a significant impact on PAHs pollution. The event mean concentration range of PAHs is 674-21,596 ng/L, following in the order of ring road > primary road > alley > viaduct. The proportion of four-ring PAHs was the highest. The first flush effect of PAHs is found in both rainfall events, and the effect of different ring PAHs is relatively similar. The content of PAHs is positively correlated with the amount of total organic carbon and suspended substance in runoff (r2> 0.72). The ecological risk assessment indicated that PAHs in road runoff except viaduct road corresponded to high risk.


Dust , Polycyclic Aromatic Hydrocarbons , Beijing , Environmental Pollution , Risk Assessment , Environmental Monitoring
5.
Environ Sci Pollut Res Int ; 31(15): 22962-22975, 2024 Mar.
Article En | MEDLINE | ID: mdl-38418787

As the most common filler in stormwater treatment, zeolite (NZ-Y) has good cation exchange capability and stabilization potential for the removal of heavy metal from aqueous solutions. In this study, sodium dodecyl sulfate (SDS) and NZ-Y were selected to preparing new adsorbent (SDS-NZ) by using a simple hydrothermal method. The sorption-desorption performance and mechanism of Cu(II) onto SDS-NZ were investigated. The results showed that the sorption of Cu(II) on SDS-NZ was in accordance with the pseudo-second-order kinetic model with an equilibrium time of 4 h. The sorption behavior fitted Langmuir isotherm with a saturation sorption capability of 9.03 mg/g, which was three times higher than that of NZ-Y. The modification of SDS increases the average pore size of NZ-Y by 3.96 nm, which results in a richer internal pore structure and more useful sorption sites for Cu(II) sorption. There was a positive correlation between solution pH values and sorption capability of Cu(II) in the range of 3.0-6.0. With the ionic strength increased, the sorption capability of Cu(II) onto SDS-NZ first decreased and then increased, which may be attributed to competitive sorption and compression of the electronic layer. The desorption of Cu(II) on SDS-NZ was favored by the increase in SDS concentration and ionic strength and decrease in solution pH values. The application of SDS-NZ in runoff improved the leaching risk of Cu(II). After several cycles, the ability of reused SDS-NZ to efficiently adsorb most heavy metals was verified with removal rates above 99%.


Metals, Heavy , Water Purification , Zeolites , Copper/chemistry , Zeolites/chemistry , Surface-Active Agents , Rain , Water Purification/methods , Water Supply , Adsorption , Hydrogen-Ion Concentration , Kinetics , Solutions
6.
J Environ Manage ; 350: 119671, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38039706

The simultaneous presence of heavy metals and surfactants in runoff induces complexation and ecological harm during migration. However, interactions between these pollutants are often overlooked in past studies. Thus, investigating heavy metal-surfactant complexes in runoff is imperative. In this work, Cu (II) and sodium dodecyl sulfate (SDS) were selected to investigate the interaction between heavy metals and surfactants due to the higher detected frequency in runoff. Through 1H NMR and FTIR observation of hydrogen atom nuclear displacement and functional group displacement of SDS, the change of SDS and Cu (II) complexation was obtained, and then the complexation form of Cu (II) and SDS was verified. The results showed that solution pH values and ionic strength had significant effects on the complexation of Cu (II). When the pH values increase from 3.0 to 6.0, the complexation efficiency of SDS with Cu (II) increased by 12.12% at low concentration of SDS, which may be attributed to the excessive protonation in the aqueous solution at acidic condition. The increase of ionic strength would inhibit the complexation reaction efficiency by 19.57% and finally reached the platform with concentration of NaNO3 was 0.10 mmol/L, which was mainly due to the competitive relationship between Na (I) and Cu (II). As a general filtering material in stormwater treatment measures, natural zeolite could affect the interaction between SDS and Cu (II) greatly. After the addition of SDS, the content of free Cu (II) in the zeolite-SDS-Cu (II) three-phase mixed system was significantly reduced, indicating that SDS had a positive effect on the removal of Cu (II) from runoff. This study is of great significance for investigating the migration and transformation mechanism of SDS and Cu (II) in the future and studying the control technology of storm runoff pollution.


Metals, Heavy , Water Pollutants, Chemical , Water Purification , Zeolites , Sodium Dodecyl Sulfate/chemistry , Rain , Water Purification/methods , Water Supply , Metals, Heavy/chemistry , Surface-Active Agents , Water Pollutants, Chemical/chemistry
7.
Sci Total Environ ; 904: 166673, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37659539

In this study, we explored the impact of RDS particle size on the migration dynamics of RDS and naphthalene through rigorous wash-off experiments. The results illuminated that smaller RDS particles showed higher mobility in stormwater runoff. On the other hand, RDS particles larger than 150 µm showed migration ratios below 2 %, suggesting that naphthalene adsorbed on larger RDS primarily migrated in dissolved form. Furthermore, we investigated the migration behaviors of RDS and naphthalene under varied conditions, including rainfall intensity, duration, and naphthalene concentrations. Larger rainfall intensity promoted the naphthalene release from RDS, while long rainfall duration (≥10 min) impeded the migration velocities (≤2.91 %/5 min for RDS, and ≤3.32 %/5 min for corresponding naphthalene) of RDS and naphthalene. Additionally, higher naphthalene concentrations in RDS diminished migration ratios of dissolved naphthalene. Significantly, the maximum uptake of naphthalene on RDS was 6.02 mg/g by the adsorption Langmuir isotherm. Importantly, the adsorption process of naphthalene in RDS is primarily governed by the physical adsorption, as demonstrated by the successive desorption experiments, which showed the desorption rate of up to 87.32 %. Moreover, advanced characterizations such as XPS, FTIR and Raman spectra further confirmed the physical nature of the adsorption process. These findings may help the understanding of the migration behavior of other pollutants in urban surface particulates.

8.
Sci Total Environ ; 903: 166522, 2023 Dec 10.
Article En | MEDLINE | ID: mdl-37625714

In situ bioremediation through slow-release agents can continuously degrade organic pollutants for a long time and have high application potential in solving problems such as tailing and rebound. However, the existing evaluation system is difficult to reflect the performance of bioremediation through slow-release agents, which is not conducive to the promotion of technology. It is urgent to establish a targeted evaluation system. Therefore, based on the multi-criteria decision-making method (MCDA), a comprehensive evaluation model was established. The evaluation index system was constructed for bioremediation through slow-release agents consisting of 16 indicators including pollutant degradation rate, agent preparation cost, engineering operation and maintenance cost, secondary pollution, long-term degradation stability, slow release time, slow release stability, increase in functional microbial flora, increase in total DNA content, agent particle size, solid agent morphology, liquid agent viscosity, dispersibility in aqueous phase, zeta potential, operability of agent preparation, and engineering operation management difficulty. Then, the weight of the indicators was determined by using the best-worst method (BWM), and evaluation criteria was established based on relevant norms and literature. Both and the indicators aggregation simple additive weighting (SAW) method constitute a quantitative evaluation model. The above content together constitutes a new evaluation system for biological remediation on organic pollution in groundwater using slow-release agents, which was defined as AOBS evaluation system. In order to verify the rationality and scientificity of the evaluation system, a typical bioremediation slow-release agent was evaluated using the established AOBS evaluation system. The results showed that the evaluation system could reasonably and comprehensively evaluate bioremediation through slow-release agents and provide suggestions for agent improvement.

9.
Water Sci Technol ; 87(9): 2159-2171, 2023 May.
Article En | MEDLINE | ID: mdl-37186621

Six polycyclic aromatic hydrocarbons (PAHs) including naphthalene (Nap), fluorene (Flu), phenanthrene (Phe), fluoranthene (Fla), pyrene (Pyr), and chrysene (Chr) were detected in runoff from five athletic fields during three rainfall events. The event mean concentration (EMC) of ∑6PAHs ranged from 3.96 to 23.23 µg/L, which was much higher than the EMC in urban traffic area runoff. Except for Nap, the PAH concentrations followed in the order of artificial turf > badminton court > basketball court > plastic runway > optennis court. The surface characteristics of the athletic fields, such as the composition of materials and roughness, played an essential role in the release of PAHs. ∑6PAHs concentration during the 2nd rainfall event (July 22nd) was the highest among the three rainfall events, indicating that high rainfall intensity facilitated the PAHs release. PAHs during three rainfall events showed little first flush effect except for the artificial turf during the 2nd (22nd July) and 3rd (29th July) rainfall events. The first flush effect could be affected by rainfall characters, PAH properties, and surface characteristics of athletic fields. Ecological risk assessment showed that PAHs in runoff corresponded to moderate-to-high risk, while health risk assessment showed that PAHs could pose a potential carcinogenic danger to human health via dermal contact.


Polycyclic Aromatic Hydrocarbons , Sports , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring , Risk Assessment , China
10.
Environ Sci Pollut Res Int ; 30(16): 46940-46949, 2023 Apr.
Article En | MEDLINE | ID: mdl-36735139

Particulate matter (PM), as an important carrier of carrying and transporting runoff pollutants, can significantly affect the behavior and removal efficiency of pollutants in bioretention facilities. In order to control the pollution caused by naphthalene in bioretention facilities, the removal efficiency and migration characteristics of naphthalene were systematically investigated under the influences of PM. The results showed that the removal efficiency of naphthalene was 74 ~ 97% in bioretention facilities under the influences of PM. With the higher concentration, the lower rainfall return period, and the longer antecedent drying period, the removal efficiency of naphthalene in each medium layer were higher. Furthermore, the PM could increase the naphthalene adsorption capacity onto medium in the first 10 cm depth, which showed more than 80% removal efficiency and lower mobility of naphthalene. The removal efficiency of naphthalene was significantly higher (90 ~ 97%), when the particle size and concentration of PM were 0 ~ 45 µm and 500 mg/L, respectively. This study investigated the important role of PM for naphthalene removal in bioretention facilities, and provided effective guidelines for runoff pollution control, design of stormwater facilities, and assessment risk of naphthalene.


Environmental Pollutants , Particulate Matter , Naphthalenes , Particle Size , Rain
11.
Sci Total Environ ; 866: 161397, 2023 Mar 25.
Article En | MEDLINE | ID: mdl-36608825

Reactive oxygen species (ROS) are ubiquitous in the natural environment that are generated by chemical or biochemical processes. Plastic rainwater facilities, as an important part of modern rainwater systems, are inevitably deteriorated by ROS. As a consequence, microplastics will be released. However, information on how ROS affect the ageing characteristics of plastic rainwater facilities and the subsequent microplastic release behavior is still insufficient. To address this knowledge gap, Fenton reagents were used to simulate the reactive oxygen species (ROS) induced ageing process of three typical plastic rainwater components (rainwater pipe, made of polyvinyl chloride; modular storage tank, made of polypropylene; inspection well, made of high-density polyethylene) and the subsequent microplastic release behavior. After 6 days of Fenton ageing, an increase in sharpness, holes, and fractures on the rainwater facilities' surface was observed by scanning electron microscope (SEM). The functional group changes on the rainwater facilities' surface were analyzed by Fourier transform infrared spectrometer (FTIR) and two-dimensional correlation spectroscopy (2D-COS) and compared with the results of X-ray photoelectron spectroscopy (XPS). During the ageing process, oxygen-containing functional groups were generated and the carbon chains were broken, which promoted peeling and the release of microplastics. The amount of released microplastics (ranging from 158 to 6617 items/g facility) varied with the type of rainwater facilities, and the order was modular storage tank > inspection well > rainwater pipe. The release amount increased with ageing time, and a significant linear relationship was observed (r2 > 0.91). The particle size of the released microplastics ranged from 2 to 1362 µm, among which 10-30 µm particles accounted for the largest proportion (62.7 %). The release amount increased exponentially with decreasing particle size (r2 > 0.71). This study indicates that large amounts of microplastics could be released from plastic rainwater components during ROS-induced ageing.

12.
J Environ Manage ; 329: 117042, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36566735

As one of the commonly used stormwater management measures, permeable pavement system (PPS) played a prominent role in controlling runoff pollution and alleviating urban waterlogging. In this study, new enhanced infiltration materials (construction waste brick, coal gangue, activated carbon, multi-walled carbon nanotube, multi-layer graphene) were applied in PPS and the control efficiency and mechanism of typical heavy metals (HMs, Mn2+, Pb2+, Zn2+, Cu2+, Cd2+, Ni2+) was investigated in runoff. Furthermore, the influences of different rainfall intensities and antecedent dry periods on HMs removal by PPS were evaluated. The results showed that all PPS with enhanced infiltration materials have little leaching effect on HMs (<3 µg/L). All the selected enhanced infiltration materials meet the requirements of PPS. The concentration of HMs in the effluent of PPS dropped sharply first, followed rebounded and then maintained at a stable range. Activated carbon PPS (AC), Multi-walled carbon nanotube PPS (MCN), and Multi-layer graphene PPS (MG) could significantly improve the control effect of PPS on nearly all selected HMs. The average removal rates of AC, MCN and MG for six HMs were 75.48%-99.35%, 81.30%-97.59%, and 73.03%-99.33%, respectively. Compared with Traditional PPS (TR), the effluent concentrations of HMs in construction waste brick PPS (CW) and coal gangue PPS (CG) were relatively higher and unstable. AC, CN and MG could adapt to different rainfall conditions and the maximum removal rates of most HMs exceed to 99%. With antecedent dry periods increased, the control effect of HMs was significantly improved. The influences of the antecedent drying period on HMs removal followed as: CW>CG>TR>MG>CN>AC. This study provided novel methods to eliminating HMs in runoff and provides implications for the design of PPS.


Graphite , Metals, Heavy , Nanotubes, Carbon , Water Pollutants, Chemical , Charcoal , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Coal , Environmental Monitoring
13.
Sci Total Environ ; 854: 158572, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-36075417

The aim of this study was to explore the influence and removal of household water purifiers (HWPs) on emerging contaminants in drinking water, and their distribution characteristics. The antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence factor genes (VFGs) and bacterial communities were profiled in the fouled filters, influents, and effluents from HWPs with five steps of filtration after 150 days operation, using metagenomics. The results showed that the diversity of dominant species in Poly Propylene 1 µm (PP1) and nanofiltration membrane (NM) was significantly higher than that in other filters. Post-activated carbon (AC) was used to detect low species richness or diversity, and the highest proportion of dominant species, which contributes to the greater microbial risk of HWPs effluents in drinking water. The number of dominant bacterial genera in the filters disinfected with chloramine was higher than that in the same group disinfected with chlorine. The bacterial species richness or diversity in water was reduced by the purification of HWPs because the filter elements effectively trapped a variety of microorganisms. The relative abundance of Antibiotic efflux in the effluents of chlorinated and chloraminated HWPs was 5.58 × 10-3 and 4.60 × 10-3, respectively, which was the main resistance mechanism. High abundance of VFGs was found in HWPs effluents and the relative abundance of aggressive VFGs was significantly higher than those of defensive VFGs. Based on the co-occurrence results, 243 subtypes of ARGs co-occurred with VFGs, and a variety of bacteria were thought to be possible ARGs hosts, which indicated that the host bacteria of VFGs in HWP effluents had a stronger attack ability. The effluent of HWPs with only filtration processes is exposed to the risk of ARGs and VFGs. This study helps to understand the actual purification effect of HWPs and provides a theoretical reference for the management and control of ARGs pollution in domestic drinking water.


Drinking Water , Water Purification , Drinking Water/analysis , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Water Purification/methods , Bacteria , Drug Resistance, Microbial/genetics , Metagenomics
14.
Article En | MEDLINE | ID: mdl-36231814

Self-supplied wells, an important water resource in remote and scattered regions, are commonly deteriorated by environmental pollution and human activity. In this study, 156 self-supplied well-water samples were collected from remote and scattered areas of Inner Mongolia (NMG), Heilongjiang (HLJ), and the suburbs of Beijing (BJ) in Northern China. Twenty-four heavy metals were identified by using the inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-optical emission spectrometry (ICP-OES), and the associated human health risks were assessed by using standards of the US Environmental Protection Agency (US EPA). The concentrations of four heavy metals (As, Fe, Mn, and Tl) in HLJ, one heavy metal (Tl) in BJ, and ten heavy metals (Al, As, B, Cr, Fe, Mn, Mo, Se, Tl, and Zn) in NMG exceeded the limits set by China or the World Health Organization (WHO). The total carcinogenic risk (TCR) and total non-carcinogenic risk (THQ) exceeding set limits mainly occurred in NMG, compared to HLJ and BJ. Moreover, As accounted for 97.87% and 60.06% of the TCR in HLJ and BJ, respectively, while Cr accounted for 70.83% of the TCR in NMG. The TCR caused by Cd in all three areas had a negligible hazard (<10-4). As accounted for 51.11%, 32.96%, and 40.88% of the THQ in HLJ, BJ, and NMG, respectively. According to the results of the principal component analysis, heavy metals in well water from HLJ and NMG mainly originated from mixed natural processes and anthropogenic sources, whereas, in BJ, most heavy metals probably originated from natural sources. In the future, long-term monitoring of heavy metals in water from self-supplied wells should be conducted for an extensive range of well-water sites, and well water with high As contamination should be monitored more and fully assessed before being used as a drinking-water source.


Drinking Water , Metals, Heavy , Water Pollutants, Chemical , Cadmium/analysis , China , Drinking Water/analysis , Environmental Monitoring/methods , Humans , Metals, Heavy/analysis , Receptors, Antigen, T-Cell , Risk Assessment , Water Pollutants, Chemical/analysis
15.
Environ Sci Pollut Res Int ; 29(47): 71100-71112, 2022 Oct.
Article En | MEDLINE | ID: mdl-35595898

In recent years, the co-contamination of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) has attracted more and more attention, and finding efficient and coordinated removal method has been the hot focus. In this study, Fe/Mn-SBA15 bimetallic mesoporous silica adsorbent (Fe/Mn-SBA15) was prepared by hydrothermal method with the functional groups Fe and Mn simultaneously doped into the framework structure of SBA15. Fe/Mn-SBA15 was systematically characterized by XRD, TEM, and BET and used in removal of typical PAHs-pyrene and heavy metal-Cu (II) from aqueous solutions simultaneously. The single and binary adsorption behaviors were studied by kinetics, isotherm, pH, and ionic strength. The results showed that the functional groups of Fe and Mn were successfully loaded into the structure of SBA15 and the prepared adsorbent was still a typical mesoporous adsorbent. The adsorption of pyrene and Cu (II) onto Fe/Mn-SBA15 was fast and the adsorption equilibrium was achieved in 100 min. The Langmuir model fitted the adsorption isotherm better and the maximum adsorption capacities for pyrene and Cu (II) were 120 mg/g and 10.52 mg/g, respectively. The increase of ionic strength could enhance and decrease the adsorption capacity of pyrene and Cu (II), which may be attributed to salting-out effect and potassium competitive. With the increase of pH values, the negative charge on the surface of the adsorbent increased, resulting in the decrease and increase of adsorption capacity of pyrene and Cu (II) onto Fe/Mn-SBA15. In addition, Fe/Mn-SBA15 was found to have a synergistic effect on the adsorption of pyrene and Cu (II). This result is mainly due to the formation of hydration complex by pyrene-Cu (II) through cation-π interaction, which increases the adsorption capacity by occupying each other's adsorption sites of adsorbent. This study provides a new method for the synergistic removal of PAHs and HMs from aqueous solutions.


Metals, Heavy , Water Pollutants, Chemical , Adsorption , Cations , Kinetics , Potassium , Pyrenes , Silicon Dioxide/chemistry , Solutions , Water/chemistry , Water Pollutants, Chemical/chemistry
16.
Bioresour Technol ; 349: 126803, 2022 Apr.
Article En | MEDLINE | ID: mdl-35124218

The plant carbon source and sulfur were selected as the denitrification electron donors and filled in the internal water storage zone (IWSZ) of bioretention system to establish excellent mixotrophic denitrification system, which was beneficial to waste recycling and showed very high nitrate nitrogen removal efficiency (approximately 94%). The ammonia nitrogen, total nitrogen, and chemical oxygen demand removal efficiencies could reach 79.41%, 85.89%, and 74.07%, respectively. Mechanism study revealed the synergistic degradation effect was existed between acetic acid released from plant carbon source and the generated sulfate, which improved the S/CH3COOH mediated nitrate nitrogen removal reactions. Autotrophic denitrification occurred mainly in the upper layer of IWSZ, and the dominant bacteria were Thiobacillus. While in the lower layer, the dominant bacteria were mainly related to organic matter utilization and heterotrophic denitrification. The abundance of narG, nirK, nirS, and nosZ functional genes in the upper layer was significantly higher than the lower layers.


Denitrification , Nitrogen , Autotrophic Processes , Bioreactors , Carbon , Denitrification/genetics , Nitrates/metabolism , Nitrogen/metabolism , Sulfur/metabolism
17.
Materials (Basel) ; 12(3)2019 Feb 12.
Article En | MEDLINE | ID: mdl-30759786

Polycyclic aromatic hydrocarbons (PAHs) and heavy metals have attracted greater attention due to their single or complex risks. It is urgent to find useful methods to remove these two pollutants together. In this study, SBA15 and MCM-41 were selected and used for the simultaneous removal of pyrene and copper from aqueous solution. Batch experiments were conducted systematically by investigating the adsorption behavior and effects including kinetics, isotherms, ionic strength and pH effects. Experimental results showed that the Langmuir and pseudo-second-order model fitted the adsorption behavior better. The solution pH values and ionic strength affected the adsorption behavior greatly. Furthermore, the synergistic or antagonistic effects could be observed on the adsorption of pyrene and copper onto MCM-41 and SBA15, respectively. The synergistic and antagonistic effects of pyrene and copper onto mesoporous silica may be attributed to the size of pyrene⁻copper complex and the average pore size of adsorbents. With the higher pore size, the complex would be adsorbed onto the inner surface of MCM-41 which showed synergistic effect on the adsorption of pyrene and copper. This study shows new guidelines and insight into the study of adsorption behavior of PAHs and heavy metals from aquatic environments.

...