Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Front Plant Sci ; 15: 1331949, 2024.
Article En | MEDLINE | ID: mdl-38390296

Duckweed is an aquatic model plant with tremendous potential in industrial and agricultural applications. Duckweed rarely flowers which significantly hinders the resource collection and heterosis utilization. Salicylic acid (SA) can significantly induce duckweed to flower; however, the underlying regulatory mechanisms remain largely unknown. In this work, transcriptome and proteome were conducted in parallel to examine the expression change of genes and proteins in Lemna gibba under SA treatment. A high-quality reference transcriptome was generated using Iso-Seq strategy, yielding 42,281 full-length transcripts. A total of 422, 423, and 417 differentially expressed genes (DEGs), as well as 213, 51, and 92 differentially expressed proteins (DEPs), were identified at flower induction, flower initiation, and flowering stages by ssRNA-seq and iTRAQ methods. Most DEGs and DEPs were only regulated at either the transcriptomic or proteomic level. Additionally, DEPs exhibited low expression correlations with the corresponding mRNAs, suggesting that post-transcriptional regulation plays a pivotal role in SA-induced flowering in L. gibba. Specifically, the genes related to photosynthesis, stress, and hormone metabolism were mainly regulated at the mRNA level, those associated with mitochondrial electron transport / ATP synthesis, nucleotide synthesis, and secondary metabolism were regulated at the protein level, while those related to redox metabolism were regulated at the mRNA and/or protein levels. The post-transcriptional regulation of genes relevant to hormone synthesis, transcription factors, and flowering was also extensively analyzed and discussed. This is the first study of integrative transcriptomic and proteomic analyses in duckweed, providing novel insights of post-transcriptional regulation in SA-induced flowering of L. gibba.

2.
Mitochondrial DNA B Resour ; 8(7): 777-782, 2023.
Article En | MEDLINE | ID: mdl-37521906

Sphaeropleales is an order of fast-growing microalgae with high oil content and high efficiency in sewage treatment, in which photosynthesis plays a critical role. We isolated a strain of Sphaeropleales, Chlorolobion braunii ITBB-AG6 from an azolla community in a sewage pond, and sequenced its chloroplast genome. The complete genome has a length of 154 kb with a GC content of 31.7%. A total of 89 genes were annotated, including 56 protein-coding genes, 30 tRNA genes, and three rRNA genes. Out of the protein coding genes, 64.3% are involved in photosynthesis, 28.6% are involved in protein synthesis, and 7.1% are involved in ATP synthesis. Transfer RNA genes for 20 amino acids were identified, in which tRNA genes for methionine, leucine, and arginine are tripled, whereas tRNA genes for glutamic acid, glycine, serine, and threonine are doubled. Terminal inverted repeats of 27.9 kb containing 10 genes related to photosynthesis and chloroplast division are present in the genome, suggesting that photosynthesis was strengthened in the evolutionary history. Phylogenetic analysis indicates that C. braunii ITBB-AG6 falls in the family Selenastraceae and is most closely related to Monoraphidium neglectum.

3.
J Nutr ; 151(7): 1717-1725, 2021 07 01.
Article En | MEDLINE | ID: mdl-33830233

BACKGROUND: Obesity is among the most serious public health problems worldwide, with few safe pharmaceutical interventions. Natural products have become an important source of potential anti-obesity therapeutics. Dihydromyricetin (DHM) exerts antidiabetic effects. The biochemical target of DHM, however, has been unknown. It is crucial to identify the biochemical target of DHM for elucidating its physiological function and therapeutic value. OBJECTIVES: The objective of this study was to identify the biochemical target of DHM. METHODS: An abundant antiadipogenic flavanonol was extracted from the herbal plant Ampelopsis grossedentata through bioassay-guided fractionation and characterized with high-resolution LC-MS and 1H and 13C nuclear magnetic resonance. Antiadipogenic experiments were done with mouse 3T3-L1 preadipocytes. A biochemical target of the chemical of interest was identified with drug affinity responsive target stability assay. Direct interactions between the chemical of interest and the protein target in vitro were predicted with molecular docking and subsequently confirmed with surface plasmon resonance. Expression levels of peroxisome proliferator-activated receptor γ (PPARγ), which is associated with 78-kDa glucose-regulated protein (GRP78), were measured with real-time qPCR. RESULTS: DHM was isolated, purified, and structurally characterized. Cellular studies showed that DHM notably reduced intracellular oil droplet formation in 3T3-L1 cells with a median effective concentration of 294 µM (i.e., 94 µg/mL). DHM targeted the ATP binding site of GRP78, which is associated with adipogenesis. An equilibrium dissociation constant between DHM and GRP78 was 21.8 µM. In 3T3-L1 cells upon treatment with DHM at 50 µM (i.e., 16 µg/mL), the expression level of PPARγ was downregulated to 53.9% of the solvent vehicle control's level. CONCLUSIONS: DHM targets GRP78 in vitro. DHM is able to reduce lipid droplet formation in 3T3-L1 cells through a mode of action that is plausibly associated with direct interactions between GRP78 and DHM, which is a step forward in determining potential applications of DHM as an anti-obesity agent.


Adipocytes , Endoplasmic Reticulum Chaperone BiP , 3T3-L1 Cells , Animals , Flavonols , Glucose , Mice , Molecular Docking Simulation
4.
Mitochondrial DNA B Resour ; 6(1): 15-16, 2021 Jan 21.
Article En | MEDLINE | ID: mdl-33659644

Chlorella vulgaris ITBBA3-12 has a role in the purification of the rubber processing wastewater. Its complete chloroplast genome contains 168369 bp, with a G + C content of 33.0%. A total of 147 genes were annotated, including 113 protein-coding genes, three rRNA (rrn23, rrn16, and rrn5) genes, and 31 tRNA genes. The significant feature of the chloroplast genome is that the genes encoding subunit V (petG), VI (petL), and apocytochrome f (petA) of the cytochrome b6/f complex are in triplicate, which was not observed in the other C. vulgaris strains. Phylogenetic analysis using the chloroplast genomes of Chlorophyta species indicated that ITBBA3-12 is closely related to C. vulgaris strain UTEX259 and NJ-7, and they clustered in the Chlorella lineage.

5.
Plant Physiol Biochem ; 155: 512-522, 2020 Oct.
Article En | MEDLINE | ID: mdl-32836197

Duckweed is a simple aquatic floating plant having great potential in sewage treatment and bioenergy production. Duckweed rarely flowers in nature, which greatly limits its germplasm collection, conservation, and heterosis usage. Salicylic acid (SA) can efficiently induce flowering of duckweed (e.g., Lemna gibba); however, the related genes and regulatory networks remain unclear. In this work, we demonstrated that L. gibba flowering induced by SA was photoperiod-dependent, stress-involved, and abscisic acid (ABA)-disrupted. Totally 202, 78, and 413 differentially expressed (DE) genes were up-regulated, while 429, 72, and 307 were down-regulated at flower induction, flower initiation, and flowering stages, respectively. At the flower induction stage, the down-regulated genes were mainly involved in cell wall, auxin and ABA, light reaction, and abiotic stress, while the up-regulated genes were involved in development, brassinosteroid, major CHO metabolism, and redox. At the flower initiation stage, the down-regulated genes were enriched in light reaction and lipid metabolism, whereas the up-regulated genes were enriched in starch degradation and Ca2+ signaling. At the flowering stage, the down-regulated genes were significantly enriched in photosynthesis, gibberellic acid, starch synthesis, nitrogen metabolism, and redox, while the up-regulated genes were enriched in cell wall, jasmonic acid, secondary metabolism, and Ca2+ signaling. Besides, 46 transcription factors and 13 flowering-related DE genes were identified. Finally, a possible floral pathway, where LgTEM1, LgSVP, and LgFT1 might play critical roles in SA-induced flowering in L. gibba, was discussed. These findings provide a useful foundation for further investigation of genes and regulatory networks of SA-induced flowering in duckweed.


Araceae/genetics , Flowers/physiology , Gene Regulatory Networks , Salicylic Acid/pharmacology , Araceae/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Photoperiod
6.
J Agric Food Chem ; 68(20): 5606-5615, 2020 May 20.
Article En | MEDLINE | ID: mdl-32227934

Rubber tree is an economically important tropical crop. Its endophytic bacterial strain Serratia marcescens ITBB B5-1 contains an intracellular macrovesicle and red pigment. In this research, the red pigment was identified as prodigiosin by quadrupole time-of-flight mass spectrometry. Prodigiosin has a wide range of potential medical values such as anticancer and antiorgan transplant rejection. The strain ITBB B5-1 accumulated prodigiosin up to 2000 mg/L, which is higher production compared to most known Serratia strains. The formation of the macrovesicle and prodigiosin biosynthesis were highly associated and were both temporal- and temperature-dependent. A mutant strain B5-1mu that failed to produce prodigiosin was obtained by ultraviolet mutagenesis. Whole genome sequencing of wild-type and mutant strains indicated that the PigC gene encoding the last-step enzyme in the prodigiosin biosynthesis pathway was mutated in B5-1mu by a 17-bp deletion. Transmission electron microscopy analysis showed that the macrovesicle was absent in the mutant strain, indicating that formation of the macrovesicle relied on prodigiosin biosynthesis. Immunoelectron microscopy using prodigiosin-specific antiserum showed the presence of prodigiosin in the macrovesicle, the cell wall, and the extracellular vesicles, while immuno-reaction was not observed in the mutant cell. These results indicate that the macrovesicle serves as a storage organelle of prodigiosin, and secretes prodigiosin into cell envelop and culture medium as extracellular vesicles.


Endophytes/genetics , Endophytes/metabolism , Hevea/microbiology , Prodigiosin/biosynthesis , Serratia marcescens/genetics , Serratia marcescens/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Endophytes/ultrastructure , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/ultrastructure , Microscopy, Immunoelectron , Mutation , Serratia marcescens/ultrastructure , Transport Vesicles/genetics , Transport Vesicles/metabolism , Transport Vesicles/ultrastructure
7.
Physiol Mol Biol Plants ; 26(1): 133-142, 2020 Jan.
Article En | MEDLINE | ID: mdl-32158126

Lemna gibba is a species of duckweed showing great potential in bioenergy production and wastewater treatment. However, the relevant transcriptomic and genomic resources are very limited for this species, which dramatically hinders its genetic diversity and genome mapping researches. In this work, ~ 233.5 million clean reads were generated from L. gibba by Illumina paired-end sequencing, and subsequently they were de novo assembled into 131,870 unigenes, of which 61,622 were annotated and 43,319 were expressed with Fragments Per Kilobase of transcript per Million fragments mapped (FPKM) > 5. In total, 19,297 simple sequence repeats (SSRs) were identified from 15,261 SSR-containing unigenes. Dinucleotide (78.4%) were the most abundant SSRs, followed by tri- (14.9%), tetra- (4.1%), and penta-nucleotides (1.5%). The top three motifs were AG/CT (69.9%), AC/GT (6.5%), and ATC/ATG (4.9%). Further analysis revealed that the presence of SSR motif was independent of the expression level for a given gene. Based on the sequence of these SSR-containing unigenes, a total of 10,292 SSR markers were developed, of which only 2671 were further retained after removing those derived from unannotated or extra-low expressed (e.g., FPKM ≤ 5) unigenes. Finally, a subset of 70 SSR markers was randomly selected and examined in nine diverse L. gibba genotypes for the PCR amplification and polymorphism, as well as in other duckweed species for the inter-specifically amplifiability. This work is the first report on the transcriptome-based large-scale SSR markers development and analysis in L. gibba. The transcriptome generated and the SSR markers developed in this work will provide a valuable resource for genetic diversity assessment in L. gibba and also for species relationship investigation in Lemnaceae family.

8.
BMC Genomics ; 21(1): 212, 2020 Mar 05.
Article En | MEDLINE | ID: mdl-32138656

BACKGROUND: Salt significantly depresses the growth and development of the greater duckweed, Spirodela polyrhiza, a model species of floating aquatic plants. Physiological responses of this plant to salt stress have been characterized, however, the roles of long noncoding RNAs (lncRNAs) remain unknown. RESULTS: In this work, totally 2815 novel lncRNAs were discovered in S. polyrhiza by strand-specific RNA sequencing, of which 185 (6.6%) were expressed differentially under salinity condition. Co-expression analysis indicated that the trans-acting lncRNAs regulated their co-expressed genes functioning in amino acid metabolism, cell- and cell wall-related metabolism, hormone metabolism, photosynthesis, RNA transcription, secondary metabolism, and transport. In total, 42 lncRNA-mRNA pairs that might participate in cis-acting regulation were found, and these adjacent genes were involved in cell wall, cell cycle, carbon metabolism, ROS regulation, hormone metabolism, and transcription factor. In addition, the lncRNAs probably functioning as miRNA targets were also investigated. Specifically, TCONS_00033722, TCONS_00044328, and TCONS_00059333 were targeted by a few well-studied salt-responsive miRNAs, supporting the involvement of miRNA and lncRNA interactions in the regulation of salt stress responses. Finally, a representative network of lncRNA-miRNA-mRNA was proposed and discussed to participate in duckweed salt stress via auxin signaling. CONCLUSIONS: This study is the first report on salt-responsive lncRNAs in duckweed, and the findings will provide a solid foundation for in-depth functional characterization of duckweed lncRNAs in response to salt stress.


Araceae/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/physiology , Salt Stress/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , RNA, Messenger , Sequence Analysis, RNA
9.
Mitochondrial DNA B Resour ; 5(3): 2732-2733, 2020 Jul 10.
Article En | MEDLINE | ID: mdl-33457925

Chlorella vulgaris ITBBA3-12 was isolated from the rubber processing wastewater and has a role in wastewater purification. Its complete mitogenome contains 88754 bp, with a G + C content of 29.7%. A total of 64 genes were annotated, including 34 protein-coding genes, 27 tRNA genes, three rRNA (rrn23, rrn16, and rrn5). Phylogenetic analysis using the mitogenomes of Trebouxiophyceae species indicated that the strain ITBBA3-12 is closely related to C. vulgaris strain UTEX259 and NJ-7, and they clustered in the Chlorella lineage.

10.
PLoS One ; 14(4): e0214335, 2019.
Article En | MEDLINE | ID: mdl-30934009

The rubber tree (Hevea brasiliensis Muell. Arg.) is a rubber producing crop and contains specialized laticifers. MADS-box genes are a family of transcription factor genes that regulate plant development, especially floral organ and gametophyte development. 97 MADS-box genes were identified in the rubber tree through transcriptomes and genome mining. 93.8% of the genes were mapped onto the genome scaffolds in correspondence to the coverage (93.8%) of current version of sequenced genome. Phylogenetic analysis indicates that type II MADS-box genes have been more actively duplicated than their orthologous genes in Arabidopsis and rice, so that most (70, 72.2%) of the MADS-box genes in the rubber tree belong to type II subfamily. This is a high percentage compared to those in Arabidopsis (43.7%) and rice (56.8%). Moreover, 69 out of 70 type II genes in the rubber tree are transcribed, and they are mostly predominantly expressed in flowers, but some genes are predominantly expressed in laticifers, suggesting their roles in both flower and laticifer development. The number of type I genes in the rubber tree is only 27 (27.8%), a much smaller number compared to their orthologous genes in Arabidopsis (56.3%) and rice (43.2%). At the same time, most of the type I genes (55.6%, 15) in the rubber tree are silent and are probably pseudogenes. The high birth rate and low death rate of type II genes and low birth rate and high death rate of type I genes may corresponds to special developmental requirements in the rubber tree, e.g. the development of laticifer system for biosynthesis of cis-polyisoprene, the rubber. Moreover, atypical MIKC* factors (e.g. HbMADS1 in S-clade, and HbMADS20 in P-clade) are identified. These genes are diverged to typical MIKC* genes in sequences and facilitate functions required in laticifer development and rubber biosynthesis, which is not necessary in Arabidopsis and rice.


Flowers/growth & development , Hevea/genetics , MADS Domain Proteins/genetics , Transcriptome/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Flowers/genetics , Gene Expression Regulation, Plant , Genome/genetics , Hevea/growth & development , MADS Domain Proteins/classification , Multigene Family/genetics , Oryza/genetics , Oryza/growth & development , Phylogeny , Plant Development/genetics , Transcription Factors/genetics
11.
Sci Rep ; 7(1): 3126, 2017 06 09.
Article En | MEDLINE | ID: mdl-28600566

Laticifers are highly specialized cells that synthesize and store natural rubber. Rubber trees (Hevea brasiliensis Muell. Arg.) contain both primary and secondary laticifers. Morphological and functional differences between the two types of laticifers are largely unknown, but such information is important for breeding and cultivation practices. Morphological comparison using paraffin sections revealed only distribution differences: the primary laticifers were distributed randomly, while the secondary laticifers were distributed in concentric rings. Using isolated laticifer networks, the primary laticifers were shown to develop via intrusive "budding" and formed necklace-like morphology, while the secondary laticifers developed straight and smooth cell walls. Comparative transcriptome analysis indicated that genes involved in cell wall modification, such as pectin esterase, lignin metabolic enzymes, and expansins, were highly up-regulated in the primary laticifers and correspond to its necklace-like morphology. Genes involved in defense against biotic stresses and rubber biosynthesis were highly up-regulated in the primary laticifers, whereas genes involved in abiotic stresses and dormancy were up-regulated in the secondary laticifers, suggesting that the primary laticifers are more adequately prepared to defend against biotic stresses, while the secondary laticifers are more adequately prepared to defend against abiotic stresses. Therefore, the two types of laticifers are morphologically and functionally distinct.


Gene Expression Profiling/methods , Hevea/cytology , Plant Proteins/genetics , Gene Expression Regulation, Plant , Hevea/anatomy & histology , Hevea/genetics , Rubber/metabolism , Sequence Analysis, RNA , Stress, Physiological
12.
Int J Mol Sci ; 17(6)2016 Jun 07.
Article En | MEDLINE | ID: mdl-27338341

Plant myrosinases (ß-thioglucoside glucohydrolases) are classified into two subclasses, Myr I and Myr II. The biological function of Myr I has been characterized as a major biochemical defense against insect pests and pathogens in cruciferous plants. However, the biological function of Myr II remains obscure. We studied the function of two Myr II member genes AtTGG4 and AtTGG5 in Arabidopsis. RT-PCR showed that both genes were specifically expressed in roots. GUS-assay revealed that both genes were expressed in the root-tip but with difference: AtTGG4 was expressed in the elongation zone of the root-tip, while AtTGG5 was expressed in the whole root-tip. Moreover, myrosin cells that produce and store the Myr I myrosinases in aboveground organs were not observed in roots, and AtTGG4 and AtTGG5 were expressed in all cells of the specific region. A homozygous double mutant line tgg4tgg5 was obtained through cross-pollination between two T-DNA insertion lines, tgg4E8 and tgg5E12, by PCR-screening in the F2 and F3 generations. Analysis of myrosinase activity in roots of mutants revealed that AtTGG4 and AtTGG5 had additive effects and contributed 35% and 65% myrosinase activity in roots of the wild type Col-0, respectively, and myrosinase activity in tgg4tgg5 was severely repressed. When grown in Murashiege & Skoog (MS) medium or in soil with sufficient water, Col-0 had the shortest roots, and tgg4tgg5 had the longest roots, while tgg4E8 and tgg5E12 had intermediate root lengths. In contrast, when grown in soil with excessive water, Col-0 had the longest roots, and tgg4tgg5 had the shortest roots. These results suggested that AtTGG4 and AtTGG5 regulated root growth and had a role in flood tolerance. The auxin-indicator gene DR5::GUS was then introduced into tgg4tgg5 by cross-pollination. DR5::GUS expression patterns in seedlings of F1, F2, and F3 generations indicated that AtTGG4 and AtTGG5 contributed to auxin biosynthesis in roots. The proposed mechanism is that indolic glucosinolate is transported to the root-tip and converted to indole-3-acetonitrile (IAN) in the tryptophan-dependent pathways by AtTGG4 and AtTGG5, and IAN is finally converted to indole-3-acetic acid (IAA) by nitrilases in the root-tip. This mechanism guarantees the biosynthesis of IAA in correct cells of the root-tip and, thus, a correct auxin gradient is formed for healthy development of roots.


Arabidopsis/physiology , Gene Expression Regulation, Plant , Glycoside Hydrolases/genetics , Indoleacetic Acids/metabolism , Plant Roots/physiology , Adaptation, Biological , DNA, Bacterial , Homozygote , Mutagenesis, Insertional , Organ Specificity/genetics , Plants, Genetically Modified , Stress, Physiological
13.
Int J Mol Sci ; 17(2): 262, 2016 Feb 22.
Article En | MEDLINE | ID: mdl-26907263

Myrosinases are ß-thioglucoside glucohydrolases and serve as defense mechanisms against insect pests and pathogens by producing toxic compounds. AtTGG6 in Arabidopsis thaliana was previously reported to be a myrosinase pseudogene but specifically expressed in pollen. However, we found that AlTGG6, an ortholog to AtTGG6 in A. lyrata (an outcrossing relative of A. thaliana) was functional, suggesting that functional AtTGG6 alleles may still exist in A. thaliana. AtTGG6 alleles in 29 A. thaliana ecotypes were cloned and sequenced. Results indicate that ten alleles were functional and encoded Myr II type myrosinase of 512 amino acids, and myrosinase activity was confirmed by overexpressing AtTGG6 in Pichia pastoris. However, the 19 other ecotypes had disabled alleles with highly polymorphic frame-shift mutations and diversified sequences. Thirteen frame-shift mutation types were identified, which occurred independently many times in the evolutionary history within a few thousand years. The functional allele was expressed specifically in pollen similar to the disabled alleles but at a higher expression level, suggesting its role in defense of pollen against insect pests such as pollen beetles. However, the defense function may have become less critical after A. thaliana evolved to self-fertilization, and thus resulted in loss of function in most ecotypes.


Arabidopsis/genetics , Genes, Plant , Pollen/genetics , Pseudogenes , Alleles , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cloning, Molecular , Evolution, Molecular , Frameshift Mutation , Gene Expression Regulation, Plant , Glycoside Hydrolases/genetics , Organ Specificity , Phylogeny , Pollen/enzymology , Sequence Analysis, DNA
14.
PLoS One ; 10(7): e0131974, 2015.
Article En | MEDLINE | ID: mdl-26133557

Banana Fusarium wilt (also known as Panama disease) is one of the most disastrous plant diseases. Effective control methods are still under exploring. The endophytic bacterial strain ITBB B5-1 was isolated from the rubber tree, and identified as Serratia marcescens by morphological, biochemical, and phylogenetic analyses. This strain exhibited a high potential for biological control against the banana Fusarium disease. Visual agar plate assay showed that ITBB B5-1 restricted the mycelial growth of the pathogenic fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4). Microscopic observation revealed that the cell wall of the FOC4 mycelium close to the co-cultured bacterium was partially decomposed, and the conidial formation was prohibited. The inhibition ratio of the culture fluid of ITBB B5-1 against the pathogenic fungus was 95.4% as estimated by tip culture assay. Chitinase and glucanase activity was detected in the culture fluid, and the highest activity was obtained at Day 2 and Day 3 of incubation for chitinase and glucanase, respectively. The filtrated cell-free culture fluid degraded the cell wall of FOC4 mycelium. These results indicated that chitinase and glucanase were involved in the antifungal mechanism of ITBB B5-1. The potted banana plants that were inoculated with ITBB B5-1 before infection with FOC4 showed 78.7% reduction in the disease severity index in the green house experiments. In the field trials, ITBB B5-1 showed a control effect of approximately 70.0% against the disease. Therefore, the endophytic bacterial strain ITBB B5-1 could be applied in the biological control of banana Fusarium wilt.


Antifungal Agents , Endophytes/isolation & purification , Fusariosis/microbiology , Fusarium , Hevea/microbiology , Musa/microbiology , Plant Diseases/microbiology , Biological Control Agents
15.
Planta ; 240(2): 337-44, 2014 Aug.
Article En | MEDLINE | ID: mdl-24841475

MAIN CONCLUSION: Callus cultures of rubber tree may serve as an efficient model to screen and study environmental factors and phytohormones that stimulate laticifer cell differentiation and improve latex yield. The number of laticifer cells in bark is one of the most important factors determining the biosynthesis and economic value of rubber trees (Hevea brasiliensis). The differentiation of laticifer cells in planta has been characterized, whereas laticifer-cell differentiation in callus cultures in vitro is largely unknown. In this study, we present molecular and physiological evidences for laticifer-cell differentiation in calli derived from rubber tree anthers. RT-PCR analysis showed that three key genes rubber elongation factor (REF), small rubber particle protein (SRPP), and cis-prenyl transferase (CPT) that are essential in latex biosynthesis in rubber tree bark also were transcribed in anther calli. Laticifer cell development in callus cultures was age-dependent; the cells began to appear at 58 days after initiation of culture, and the percentage of laticifer cells increased steadily with increasing callus age. Addition of 0-2 mg/L jasmonic acid (JA) to the media significantly promoted the differentiation of laticifer cells in callus cultures. However, JA concentrations higher than 3 mg/L were not optimum for laticifer cells differentiation; this result was not observed in previous in planta studies. Laticifer cells differentiated on media with pH 5.8-7.0, with an optimum of pH 6.2, whereas a higher pH inhibited differentiation. These results indicate that the anther-derived rubber tree callus may serve as a new and more efficient model to study environmental factors that influence laticifer cell differentiation, and may be useful for research on new technologies to improve latex yield, and to screen for commercially useful phytohormones.


Cyclopentanes/pharmacology , Hevea/cytology , Oxylipins/pharmacology , Cell Differentiation/drug effects , Gene Expression Regulation, Plant , Transferases/genetics , Transferases/metabolism
16.
Plant Cell Rep ; 30(6): 1117-24, 2011 Jun.
Article En | MEDLINE | ID: mdl-21301851

Laticifers are highly specialized cells present in over 20 plant families. They are well defined in planta. In vitro development of laticifers was also observed in some plants, but uncertain in the callus cultures of rubber tree, one of the most economically important latex producing plants. In the present study, we provide evidence that laticifer cells present in the callus cultures of rubber tree by histochemical and immunohistochemical studies. They present in the callus mainly as separate non-elongated form, a novel morphology different from the morphology of laticifer cells in planta, excluding their origin from explants. The occurring frequency of laticifer cells in the callus was genotype-dependent and negatively correlated with the somatic embryogenetic ability, suggesting that the presence of laticifer cells in the callus inhibit somatic embryogenesis in tissue culture of rubber tree. The genotypes PR107, RRIM600, Reyan8-79, and Reyan7-33-97 with lower embryogenetic ability compared to Haiken 2 had more laticifer cells, and laticifer clusters were only observed in these genotypes.


Cell Culture Techniques/methods , Flowers/cytology , Hevea/cytology , Genotype , Hevea/embryology , Hevea/genetics , Immunohistochemistry , Paraffin Embedding
...