Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 36(8): 2759-2777, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38447960

RESUMEN

Cotton (Gossypium hirsutum) fibers, vital natural textile materials, are single-cell trichomes that differentiate from the ovule epidermis. These fibers are categorized as lint (longer fibers useful for spinning) or fuzz (shorter, less useful fibers). Currently, developing cotton varieties with high lint yield but without fuzz remains challenging due to our limited knowledge of the molecular mechanisms underlying fiber initiation. This study presents the identification and characterization of a naturally occurring dominant negative mutation GhMYB25-like_AthapT, which results in a reduced lint and fuzzless phenotype. The GhMYB25-like_AthapT protein exerts its dominant negative effect by suppressing the activity of GhMYB25-like during lint and fuzz initiation. Intriguingly, the negative effect of GhMYB25-like_AthapT could be alleviated by high expression levels of GhMYB25-like. We also uncovered the role of GhMYB25-like in regulating the expression of key genes such as GhPDF2 (PROTODERMAL FACTOR 2), CYCD3; 1 (CYCLIN D3; 1), and PLD (Phospholipase D), establishing its significance as a pivotal transcription factor in fiber initiation. We identified other genes within this regulatory network, expanding our understanding of the determinants of fiber cell fate. These findings offer valuable insights for cotton breeding and contribute to our fundamental understanding of fiber development.


Asunto(s)
Fibra de Algodón , Regulación de la Expresión Génica de las Plantas , Gossypium , Mutación , Proteínas de Plantas , Gossypium/genética , Gossypium/metabolismo , Gossypium/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación/genética , Fenotipo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
J Am Chem Soc ; 145(50): 27282-27294, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38063341

RESUMEN

Remarkable advances have been achieved in solution self-assembly of polypeptides from the perspective of nanostructures, mechanisms, and applications. Despite the intrinsic chirality of polypeptides, the promising generation of aqueous circularly polarized luminescence (CPL) based on their self-assembly has been rarely reported due to the weak fluorescence of most polypeptides and the indeterminate self-assembly mechanism. Here, we propose a facile strategy for achieving aqueous CPL based on the self-assembly of simple homopolypeptides modified with a terminal group featuring both twisted intramolecular charge transfer and aggregation-induced emission properties. A morphology-dependent CPL can be observed under different self-assembly conditions by altering the solvents. A nanotoroid-dispersed aqueous solution with detectable CPL can be obtained by using tetrahydrofuran as a good solvent for the self-assembly, which is attributed to the involvement of the terminal group in the chiral environment formed by the homopolypeptide chains. However, such a chiral packing mode cannot be realized in nanorods self-assembled from dioxane, resulting in an inactive CPL phenomenon. Furthermore, CPL signals can be greatly amplified by co-assembly of homopolypeptides with the achiral small molecule derived from the terminal group. This work not only provides a pathway to construct aqueous CPL-active homopolypeptide nanomaterials but also reveals a potential mechanism in the self-assembly for chiral production, transfer, and amplification in polypeptide-based nanostructures.


Asunto(s)
Luminiscencia , Nanoestructuras , Solventes , Fluorescencia , Péptidos
3.
Mater Sci Eng C Mater Biol Appl ; 128: 112295, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34474846

RESUMEN

It is of great significance to develop osteoinductive artificial scaffold for bone repair and regeneration. We constructed a biomimetic apatite interface on electrospun polycaprolactone fibers by combining layer-by-layer (LbL) nanocoating with mineralization to fabricate an osteoinductive artificial scaffold. After polydopamine modification, cationic type-І collagen and anionic chondroitin sulfate were sequentially adsorbed on the fiber surface. The fibers coated with the multilayer components served as the precursor matrix to induce apatite deposition. By adjusting the number of the layers and duration of mineralization, the nanoscale morphology of composite fibers was optimized. When ten bilayers of the collagen and chondroitin sulfate were deposited onto the fibers followed by one day-mineralization, the obtained polycaprolactone-apatite composite scaffolds significantly promoted the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. In a subcutaneous implantation in mice, this composite fiber membrane enhanced in vivo ectopic osteogenesis. Our nano-architectural scaffolds were able to mimic the composition and structure of the bone matrix to a certain extent, holding great potential for bone repair and regeneration.


Asunto(s)
Sulfatos de Condroitina , Osteogénesis , Animales , Regeneración Ósea , Diferenciación Celular , Colágeno , Ratones , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA