Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Nat Biomed Eng ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834752

The manufacturing of autologous chimaeric antigen receptor (CAR) T cells largely relies either on fed-batch and manual processes that often lack environmental monitoring and control or on bioreactors that cannot be easily scaled out to meet patient demands. Here we show that human primary T cells can be activated, transduced and expanded to high densities in a 2 ml automated closed-system microfluidic bioreactor to produce viable anti-CD19 CAR T cells (specifically, more than 60 million CAR T cells from donor cells derived from patients with lymphoma and more than 200 million CAR T cells from healthy donors). The in vitro secretion of cytokines, the short-term cytotoxic activity and the long-term persistence and proliferation of the cell products, as well as their in vivo anti-leukaemic activity, were comparable to those of T cells produced in a gas-permeable well. The manufacturing-process intensification enabled by the miniaturized perfusable bioreactor may facilitate the analysis of the growth and metabolic states of CAR T cells during ex vivo culture, the high-throughput optimization of cell-manufacturing processes and the scale out of cell-therapy manufacturing.

2.
Adv Sci (Weinh) ; 10(28): e2302175, 2023 10.
Article En | MEDLINE | ID: mdl-37544893

In keeping with the rule of "form follows function", morphological aspects of a cell can reflect its role. Here, it is shown that the cellular granularity of a lymphocyte, represented by its intrinsic side scatter (SSC), is a potent indicator of its cell state and function. The granularity of a lymphocyte increases from naïve to terminal effector state. High-throughput cell-sorting yields a SSChigh population that can mediate immediate effector functions, and a highly prolific SSClow population that can give rise to the replenishment of the memory pool. CAR-T cells derived from the younger SSClow population possess desirable attributes for immunotherapy, manifested by increased naïve-like cells and stem cell memory (TSCM )-like cells together with a balanced CD4/CD8 ratio, as well as enhanced target-killing in vitro and in vivo. Altogether, lymphocyte segregation based on biophysical properties is an effective approach for label-free selection of cells that share collective functions and can have important applications for cell-based immunotherapies.


CD8-Positive T-Lymphocytes , Immunotherapy, Adoptive , Immunotherapy , CD4-Positive T-Lymphocytes , Stem Cells
3.
Front Immunol ; 11: 580968, 2020.
Article En | MEDLINE | ID: mdl-33013934

Non-alcoholic fatty liver disease (NAFLD) has been on a global rise. While animal models have rendered valuable insights to the pathogenesis of NAFLD, discrepancy with patient data still exists. Since non-alcoholic steatohepatitis (NASH) involves chronic inflammation, and CD4+ T cell infiltration of the liver is characteristic of NASH patients, we established and characterized a humanized mouse model to identify human-specific immune response(s) associated with NAFLD progression. Immunodeficient mice engrafted with human immune cells (HIL mice) were fed with high fat and high calorie (HFHC) or chow diet for 20 weeks. Liver histology and immune profile of HIL mice were analyzed and compared with patient data. HIL mice on HFHC diet developed steatosis, inflammation and fibrosis of the liver. Human CD4+ central and effector memory T cells increased within the liver and in the peripheral blood of our HIL mice, accompanied by marked up-regulation of pro-inflammatory cytokines (IL-17A and IFNγ). In vivo depletion of human CD4+ T cells in HIL mice reduced liver inflammation and fibrosis, but not steatosis. Our results highlight CD4+ memory T cell subsets as important drivers of NAFLD progression from steatosis to fibrosis and provides a humanized mouse model for pre-clinical evaluation of potential therapeutics.


CD4-Positive T-Lymphocytes/immunology , Liver Cirrhosis, Experimental/etiology , Liver Cirrhosis, Experimental/immunology , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/immunology , Animals , CD4-Positive T-Lymphocytes/pathology , Cytokines/blood , Diet, High-Fat/adverse effects , Female , Fetal Stem Cells/transplantation , Hepatocytes/transplantation , Heterografts , Humans , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Liver Cirrhosis, Experimental/pathology , Lymphocyte Depletion , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Non-alcoholic Fatty Liver Disease/pathology
4.
J Cell Biol ; 218(9): 2896-2918, 2019 09 02.
Article En | MEDLINE | ID: mdl-31350280

Meiosis generates four genetically distinct haploid gametes over the course of two reductional cell divisions. Meiotic divisions are characterized by the coordinated deposition and removal of various epigenetic marks. Here we propose that nuclear respiratory factor 1 (NRF1) regulates transcription of euchromatic histone methyltransferase 1 (EHMT1) to ensure normal patterns of H3K9 methylation during meiotic prophase I. We demonstrate that cyclin-dependent kinase (CDK2) can bind to the promoters of a number of genes in male germ cells including that of Ehmt1 through interaction with the NRF1 transcription factor. Our data indicate that CDK2-mediated phosphorylation of NRF1 can occur at two distinct serine residues and negatively regulates NRF1 DNA binding activity in vitro. Furthermore, induced deletion of Cdk2 in spermatocytes results in increased expression of many NRF1 target genes including Ehmt1 We hypothesize that the regulation of NRF1 transcriptional activity by CDK2 may allow the modulation of Ehmt1 expression, therefore controlling the dynamic methylation of H3K9 during meiotic prophase.


Cyclin-Dependent Kinase 2/metabolism , Gene Expression Regulation, Enzymologic , Histone-Lysine N-Methyltransferase/biosynthesis , Meiotic Prophase I/physiology , Nuclear Respiratory Factor 1/metabolism , Spermatocytes/metabolism , Animals , Cyclin-Dependent Kinase 2/genetics , Gene Deletion , Histone-Lysine N-Methyltransferase/genetics , Male , Mice , Mice, Knockout , Nuclear Respiratory Factor 1/genetics , Spermatocytes/cytology
...