Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
JCI Insight ; 4(22)2019 11 14.
Article En | MEDLINE | ID: mdl-31723061

The ciliopathies are a group of phenotypically overlapping disorders caused by structural or functional defects in the primary cilium. Although disruption of numerous signaling pathways and cellular trafficking events have been implicated in ciliary pathology, treatment options for affected individuals remain limited. Here, we performed a genome-wide RNAi (RNA interference) screen to identify genetic suppressors of BBS4, one of the genes mutated in Bardet-Biedl syndrome (BBS). We discovered 10 genes that, when silenced, ameliorate BBS4-dependent pathology. One of these encodes USP35, a negative regulator of the ubiquitin proteasome system, suggesting that inhibition of a deubiquitinase, and subsequent facilitation of the clearance of signaling components, might ameliorate BBS-relevant phenotypes. Testing of this hypothesis in transient and stable zebrafish genetic models showed this posit to be true; suppression or ablation of usp35 ameliorated hallmark ciliopathy defects including impaired convergent extension (CE), renal tubule convolution, and retinal degeneration with concomitant clearance of effectors such as ß-catenin and rhodopsin. Together, our findings reinforce a direct link between proteasome-dependent degradation and ciliopathies and suggest that augmentation of this system might offer a rational path to novel therapeutic modalities.


Ciliopathies/genetics , Endopeptidases/genetics , Ubiquitin-Specific Proteases/genetics , Animals , Bardet-Biedl Syndrome/drug therapy , Bardet-Biedl Syndrome/genetics , CRISPR-Cas Systems/genetics , Cell Line , Cilia/genetics , Genetic Techniques , Humans , Microtubule-Associated Proteins/genetics , Phenotype , Retinal Degeneration/genetics , Wnt Signaling Pathway/genetics , Zebrafish , Zebrafish Proteins/genetics
2.
Sci Rep ; 8(1): 10779, 2018 Jul 17.
Article En | MEDLINE | ID: mdl-30018450

Kabuki Syndrome (KS) is a rare disorder characterized by distinctive facial features, short stature, skeletal abnormalities, and neurodevelopmental deficits. Previously, we showed that loss of function of RAP1A, a RAF1 regulator, can activate the RAS/MAPK pathway and cause KS, an observation recapitulated in other genetic models of the disorder. These data suggested that suppression of this signaling cascade might be of therapeutic benefit for some features of KS. To pursue this possibility, we performed a focused small molecule screen of a series of RAS/MAPK pathway inhibitors, where we tested their ability to rescue disease-relevant phenotypes in a zebrafish model of the most common KS locus, kmt2d. Consistent with a pathway-driven screening paradigm, two of 27 compounds showed reproducible rescue of early developmental pathologies. Further analyses showed that one compound, desmethyl-Dabrafenib (dmDf), induced no overt pathologies in zebrafish embryos but could rescue MEK hyperactivation in vivo and, concomitantly, structural KS-relevant phenotypes in all KS zebrafish models (kmt2d, kmd6a and rap1). Mass spectrometry quantitation suggested that a 100 nM dose resulted in sub-nanomolar exposure of this inhibitor and was sufficient to rescue both mandibular and neurodevelopmental defects. Crucially, germline kmt2d mutants recapitulated the gastrulation movement defects, micrognathia and neurogenesis phenotypes of transient models; treatment with dmDf ameliorated all of them significantly. Taken together, our data reinforce a causal link between MEK hyperactivation and KS and suggest that chemical suppression of BRAF might be of potential clinical utility for some features of this disorder.


Abnormalities, Multiple/prevention & control , Face/abnormalities , Hematologic Diseases/prevention & control , Imidazoles/pharmacology , Oximes/pharmacology , Protein Kinase Inhibitors/pharmacology , Vestibular Diseases/prevention & control , Zebrafish/growth & development , Abnormalities, Multiple/pathology , Animals , Craniofacial Abnormalities/prevention & control , Face/pathology , Hematologic Diseases/pathology , Imidazoles/adverse effects , Imidazoles/chemistry , Jaw Abnormalities/prevention & control , MAP Kinase Signaling System , Oximes/adverse effects , Oximes/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Toxicity Tests , Vestibular Diseases/pathology , Zebrafish/embryology , Zebrafish/genetics
3.
Am J Hum Genet ; 102(3): 364-374, 2018 03 01.
Article En | MEDLINE | ID: mdl-29429573

Despite the rapid discovery of genes for rare genetic disorders, we continue to encounter individuals presenting with syndromic manifestations. Here, we have studied four affected people in three families presenting with cholestasis, congenital diarrhea, impaired hearing, and bone fragility. Whole-exome sequencing of all affected individuals and their parents identified biallelic mutations in Unc-45 Myosin Chaperone A (UNC45A) as a likely driver for this disorder. Subsequent in vitro and in vivo functional studies of the candidate gene indicated a loss-of-function paradigm, wherein mutations attenuated or abolished protein activity with concomitant defects in gut development and function.


Bone and Bones/pathology , Cholestasis/genetics , Diarrhea/genetics , Hearing Loss/genetics , Intracellular Signaling Peptides and Proteins/genetics , Loss of Function Mutation/genetics , Adolescent , Animals , Child, Preschool , Diarrhea/physiopathology , Family , Female , Fibroblasts/pathology , Gastrointestinal Motility , Humans , Infant, Newborn , Lymphocytes/pathology , Male , Pedigree , Phenotype , Syndrome , Young Adult , Zebrafish
4.
Am J Hum Genet ; 101(3): 466-477, 2017 Sep 07.
Article En | MEDLINE | ID: mdl-28886345

RAC1 is a widely studied Rho GTPase, a class of molecules that modulate numerous cellular functions essential for normal development. RAC1 is highly conserved across species and is under strict mutational constraint. We report seven individuals with distinct de novo missense RAC1 mutations and varying degrees of developmental delay, brain malformations, and additional phenotypes. Four individuals, each harboring one of c.53G>A (p.Cys18Tyr), c.116A>G (p.Asn39Ser), c.218C>T (p.Pro73Leu), and c.470G>A (p.Cys157Tyr) variants, were microcephalic, with head circumferences between -2.5 to -5 SD. In contrast, two individuals with c.151G>A (p.Val51Met) and c.151G>C (p.Val51Leu) alleles were macrocephalic with head circumferences of +4.16 and +4.5 SD. One individual harboring a c.190T>G (p.Tyr64Asp) allele had head circumference in the normal range. Collectively, we observed an extraordinary spread of ∼10 SD of head circumferences orchestrated by distinct mutations in the same gene. In silico modeling, mouse fibroblasts spreading assays, and in vivo overexpression assays using zebrafish as a surrogate model demonstrated that the p.Cys18Tyr and p.Asn39Ser RAC1 variants function as dominant-negative alleles and result in microcephaly, reduced neuronal proliferation, and cerebellar abnormalities in vivo. Conversely, the p.Tyr64Asp substitution is constitutively active. The remaining mutations are probably weakly dominant negative or their effects are context dependent. These findings highlight the importance of RAC1 in neuronal development. Along with TRIO and HACE1, a sub-category of rare developmental disorders is emerging with RAC1 as the central player. We show that ultra-rare disorders caused by private, non-recurrent missense mutations that result in varying phenotypes are challenging to dissect, but can be delineated through focused international collaboration.


Brain Diseases/genetics , Developmental Disabilities/genetics , Microcephaly/genetics , Mutation, Missense , rac1 GTP-Binding Protein/genetics , Adolescent , Amino Acid Sequence , Animals , Brain Diseases/pathology , Child , Child, Preschool , Developmental Disabilities/pathology , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/pathology , Female , Humans , Infant , Male , Mice , Microcephaly/pathology , Pedigree , Phenotype , Zebrafish/genetics , Zebrafish/growth & development
5.
Invest Ophthalmol Vis Sci ; 58(3): 1570-1576, 2017 03 01.
Article En | MEDLINE | ID: mdl-28282489

Purpose: Genome-wide association (GWAS) and sequencing studies for AMD have highlighted the importance of coding variants at loci that encode components of the complement pathway. However, assessing the contribution of such alleles to AMD, especially when they are rare, remains coarse, in part because of the persistent challenge in establishing their functional relevance. Others and we have shown previously that rare alleles in complement factor I (CFI) can be tested functionally using a surrogate in vivo assay of retinal vascularization in zebrafish embryos. Here, we have implemented and scaled these tools to assess the overall contribution of rare alleles in CFI to AMD. Methods: We performed targeted sequencing of CFI in 731 AMD patients, followed by replication in a second patient cohort of 511 older healthy individuals. Systematic functional testing of all alleles and post-hoc statistical analysis of functional variants was also performed. Results: We discovered 20 rare coding nonsynonymous variants, including the previously reported G119R allele. In vivo testing led to the identification of nine variants that alter CFI; six of which are associated with hypoactive complement factor I (FI). Post-hoc analysis in ethnically matched, population controls showed six of these to be present exclusively in cases. Conclusions: Taken together, our data argue that multiple rare and ultra-rare alleles in CFI contribute to AMD pathogenesis; they improve the precision of the assessment of the contribution of CFI to AMD; and they offer a rational route to establishing both causality and direction of allele effect for genes associated with this disorder.


Complement Factor I/genetics , DNA/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Macular Degeneration/genetics , Polymorphism, Single Nucleotide , Aged , Aged, 80 and over , Alleles , Animals , Complement Factor I/metabolism , Female , Genotype , Humans , Macular Degeneration/diagnosis , Macular Degeneration/metabolism , Male , Middle Aged , Zebrafish/embryology
6.
Hum Genomics ; 10(1): 23, 2016 06 21.
Article En | MEDLINE | ID: mdl-27329102

Age-related macular degeneration (AMD) is an ocular neurodegenerative disorder and is the leading cause of legal blindness in Western societies, with a prevalence of up to 8 % over the age of 60, which continues to increase with age. AMD is characterized by the progressive breakdown of the macula (the central region of the retina), resulting in the loss of central vision including visual acuity. While its molecular etiology remains unclear, advances in genetics and genomics have illuminated the genetic architecture of the disease and have generated attractive pathomechanistic hypotheses. Here, we review the genetic architecture of AMD, considering the contribution of both common and rare alleles to susceptibility, and we explore the possible mechanistic links between photoreceptor degeneration and the alternative complement pathway, a cascade that has emerged as the most potent genetic driver of this disorder.


Complement Pathway, Alternative/genetics , Macular Degeneration/immunology , Animals , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Macular Degeneration/genetics , Mutation , Risk Factors
7.
Am J Hum Genet ; 97(2): 343-52, 2015 Aug 06.
Article En | MEDLINE | ID: mdl-26235985

Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.


DEAD-box RNA Helicases/genetics , Intellectual Disability/genetics , Mutation, Missense/genetics , Phenotype , Sex Characteristics , Wnt Signaling Pathway/genetics , Amino Acid Substitution/genetics , Animals , Base Sequence , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/pathology , Exome/genetics , Female , Gene Dosage/genetics , Humans , Intellectual Disability/pathology , Male , Molecular Sequence Data , Sequence Analysis, DNA , Zebrafish
9.
Genome Res ; 25(2): 155-66, 2015 Feb.
Article En | MEDLINE | ID: mdl-25561519

RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III-related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development.


Abnormalities, Multiple/genetics , Intellectual Disability/genetics , Mutation , RNA Polymerase III/metabolism , TATA-Binding Protein Associated Factors/genetics , Transcription, Genetic , Abnormalities, Multiple/diagnosis , Adolescent , Amino Acid Sequence , Amino Acid Substitution , Animals , Brain/pathology , Cell Proliferation , Child , Child, Preschool , Exome , Facies , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Intellectual Disability/diagnosis , Magnetic Resonance Imaging , Male , Models, Molecular , Molecular Sequence Data , Pedigree , Phenotype , Protein Conformation , Protein Isoforms , Siblings , Syndrome , TATA-Binding Protein Associated Factors/chemistry , TATA-Binding Protein Associated Factors/metabolism , Zebrafish
10.
Am J Hum Genet ; 95(1): 85-95, 2014 Jul 03.
Article En | MEDLINE | ID: mdl-24995868

Restless legs syndrome (RLS) is a common neurologic condition characterized by nocturnal dysesthesias and an urge to move, affecting the legs. RLS is a complex trait, for which genome-wide association studies (GWASs) have identified common susceptibility alleles of modest (OR 1.2-1.7) risk at six genomic loci. Among these, variants in MEIS1 have emerged as the largest risk factors for RLS, suggesting that perturbations in this transcription factor might be causally related to RLS susceptibility. To establish this causality, direction of effect, and total genetic burden of MEIS1, we interrogated 188 case subjects and 182 control subjects for rare alleles not captured by previous GWASs, followed by genotyping of ∼3,000 case subjects and 3,000 control subjects, and concluded with systematic functionalization of all discovered variants using a previously established in vivo model of neurogenesis. We observed a significant excess of rare MEIS1 variants in individuals with RLS. Subsequent assessment of all nonsynonymous variants by in vivo complementation revealed an excess of loss-of-function alleles in individuals with RLS. Strikingly, these alleles compromised the function of the canonical MEIS1 splice isoform but were irrelevant to an isoform known to utilize an alternative 3' sequence. Our data link MEIS1 loss of function to the etiopathology of RLS, highlight how combined sequencing and systematic functional annotation of rare variation at GWAS loci can detect risk burden, and offer a plausible explanation for the specificity of phenotypic expressivity of loss-of-function alleles at a locus broadly necessary for neurogenesis and neurodevelopment.


Homeodomain Proteins/genetics , Neoplasm Proteins/genetics , Restless Legs Syndrome/genetics , Animals , Genetic Complementation Test , Genotype , Humans , In Situ Hybridization , Mass Spectrometry , Myeloid Ecotropic Viral Integration Site 1 Protein , Zebrafish/embryology
11.
Nat Genet ; 45(11): 1366-70, 2013 Nov.
Article En | MEDLINE | ID: mdl-24036952

To define the role of rare variants in advanced age-related macular degeneration (AMD) risk, we sequenced the exons of 681 genes within all reported AMD loci and related pathways in 2,493 cases and controls. We first tested each gene for increased or decreased burden of rare variants in cases compared to controls. We found that 7.8% of AMD cases compared to 2.3% of controls are carriers of rare missense CFI variants (odds ratio (OR) = 3.6; P = 2 × 10(-8)). There was a predominance of dysfunctional variants in cases compared to controls. We then tested individual variants for association with disease. We observed significant association with rare missense alleles in genes other than CFI. Genotyping in 5,115 independent samples confirmed associations with AMD of an allele in C3 encoding p.Lys155Gln (replication P = 3.5 × 10(-5), OR = 2.8; joint P = 5.2 × 10(-9), OR = 3.8) and an allele in C9 encoding p.Pro167Ser (replication P = 2.4 × 10(-5), OR = 2.2; joint P = 6.5 × 10(-7), OR = 2.2). Finally, we show that the allele of C3 encoding Gln155 results in resistance to proteolytic inactivation by CFH and CFI. These results implicate loss of C3 protein regulation and excessive alternative complement activation in AMD pathogenesis, thus informing both the direction of effect and mechanistic underpinnings of this disorder.


Complement C3/genetics , Complement C9/genetics , Complement Factor I/genetics , Macular Degeneration/genetics , Aging , Amino Acid Substitution , Base Sequence , Complement Activation/genetics , Genetic Predisposition to Disease , Genetic Variation , Genotype , Humans , Risk , Sequence Analysis, DNA
12.
Nat Genet ; 45(7): 813-7, 2013 Jul.
Article En | MEDLINE | ID: mdl-23685748

Up to half of the heritability of age-related macular degeneration (AMD) is explained by common variants. Here, we report the identification of a rare, highly penetrant missense mutation in CFI encoding a p.Gly119Arg substitution that confers high risk of AMD (P = 3.79 × 10⁻6; odds ratio (OR) = 22.20, 95% confidence interval (CI) = 2.98-164.49). Plasma and sera from cases carrying the p.Gly119Arg substitution mediated the degradation of C3b, both in the fluid phase and on the cell surface, to a lesser extent than those from controls. Recombinant protein studies showed that the Gly119Arg mutant protein is both expressed and secreted at lower levels than wild-type protein. Consistent with these findings, human CFI mRNA encoding Arg119 had reduced activity compared to wild-type mRNA encoding Gly119 in regulating vessel thickness and branching in the zebrafish retina. Taken together, these findings demonstrate that rare, highly penetrant mutations contribute to the genetic burden of AMD.


Complement Factor I/genetics , Macular Degeneration/genetics , Mutation, Missense , Amino Acid Substitution , Animals , Animals, Genetically Modified , Base Sequence , Complement Factor I/physiology , Embryo, Nonmammalian , Genetic Predisposition to Disease , HEK293 Cells , Humans , Macular Degeneration/pathology , Models, Genetic , Models, Molecular , Mutation, Missense/physiology , Retina/embryology , Retina/metabolism , Retina/pathology , Risk Factors , Zebrafish
13.
Ophthalmology ; 119(9): 1874-85, 2012 Sep.
Article En | MEDLINE | ID: mdl-22705344

PURPOSE: To investigate whether the 2 subtypes of advanced age-related macular degeneration (AMD), choroidal neovascularization (CNV), and geographic atrophy (GA) segregate separately in families and to identify which genetic variants are associated with these 2 subtypes. DESIGN: Sibling correlation study and genome-wide association study (GWAS). PARTICIPANTS: For the sibling correlation study, 209 sibling pairs with advanced AMD were included. For the GWAS, 2594 participants with advanced AMD subtypes and 4134 controls were included. Replication cohorts included 5383 advanced AMD participants and 15 240 controls. METHODS: Participants had the AMD grade assigned based on fundus photography, examination, or both. To determine heritability of advanced AMD subtypes, a sibling correlation study was performed. For the GWAS, genome-wide genotyping was conducted and 6 036 699 single nucleotide polymorphisms (SNPs) were imputed. Then, the SNPs were analyzed with a generalized linear model controlling for genotyping platform and genetic ancestry. The most significant associations were evaluated in independent cohorts. MAIN OUTCOME MEASURES: Concordance of advanced AMD subtypes in sibling pairs and associations between SNPs with GA and CNV advanced AMD subtypes. RESULTS: The difference between the observed and expected proportion of siblings concordant for the same subtype of advanced AMD was different to a statistically significant degree (P = 4.2 × 10(-5)), meaning that in siblings of probands with CNV or GA, the same advanced subtype is more likely to develop. In the analysis comparing participants with CNV to those with GA, a statistically significant association was observed at the ARMS2/HTRA1 locus (rs10490924; odds ratio [OR], 1.47; P = 4.3 × 10(-9)), which was confirmed in the replication samples (OR, 1.38; P = 7.4 × 10(-14) for combined discovery and replication analysis). CONCLUSIONS: Whether CNV versus GA develops in a patient with AMD is determined in part by genetic variation. In this large GWAS meta-analysis and replication analysis, the ARMS2/HTRA1 locus confers increased risk for both advanced AMD subtypes, but imparts greater risk for CNV than for GA. This locus explains a small proportion of the excess sibling correlation for advanced AMD subtype. Other loci were detected with suggestive associations that differ for advanced AMD subtypes and deserve follow-up in additional studies.


Choroidal Neovascularization/genetics , Geographic Atrophy/genetics , Macular Degeneration/genetics , Polymorphism, Single Nucleotide , Proteins/genetics , Serine Endopeptidases/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , High-Temperature Requirement A Serine Peptidase 1 , Humans , Male , Risk Factors , Siblings
14.
J Cell Sci ; 125(Pt 2): 362-75, 2012 Jan 15.
Article En | MEDLINE | ID: mdl-22302990

Primary cilia are conserved organelles that play crucial roles as mechano- and chemosensors, as well as transducing signaling cascades. Consequently, ciliary dysfunction results in a broad range of phenotypes: the ciliopathies. Bardet-Biedl syndrome (BBS), a model ciliopathy, is caused by mutations in 16 known genes. However, the biochemical functions of the BBS proteins are not fully understood. Here we show that the BBS7 protein (localized in the centrosomes, basal bodies and cilia) probably has a nuclear role by virtue of the presence of a biologically confirmed nuclear export signal. Consistent with this observation, we show that BBS7 interacts physically with the polycomb group (PcG) member RNF2 and regulate its protein levels, probably through a proteasome-mediated mechanism. In addition, our data supports a similar role for other BBS proteins. Importantly, the interaction with this PcG member is biologically relevant because loss of BBS proteins leads to the aberrant expression of endogenous RNF2 targets in vivo, including several genes that are crucial for development and for cellular and tissue homeostasis. Our data indicate a hitherto unappreciated, direct role for the BBS proteins in transcriptional regulation and potentially expand the mechanistic spectrum that underpins the development of ciliary phenotypes in patients.


Gene Expression Regulation , Proteins/physiology , Transcription, Genetic , Adaptor Proteins, Signal Transducing , Animals , Cell Nucleus/metabolism , Computer Simulation , Cytoskeletal Proteins , HEK293 Cells , HeLa Cells , Humans , Mice , NIH 3T3 Cells , Nuclear Export Signals , Polycomb Repressive Complex 1/metabolism , Protein Transport , Proteins/metabolism , Zebrafish/genetics
15.
Nat Genet ; 43(12): 1232-6, 2011 Oct 23.
Article En | MEDLINE | ID: mdl-22019782

Two common variants in the gene encoding complement factor H (CFH), the Y402H substitution (rs1061170, c.1204C>T)(1-4) and the intronic rs1410996 SNP(5,6), explain 17% of age-related macular degeneration (AMD) liability. However, proof for the involvement of CFH, as opposed to a neighboring transcript, and knowledge of the potential mechanism of susceptibility alleles are lacking. Assuming that rare functional variants might provide mechanistic insights, we used genotype data and high-throughput sequencing to discover a rare, high-risk CFH haplotype with a c.3628C>T mutation that resulted in an R1210C substitution. This allele has been implicated previously in atypical hemolytic uremic syndrome, and it abrogates C-terminal ligand binding(7,8). Genotyping R1210C in 2,423 AMD cases and 1,122 controls demonstrated high penetrance (present in 40 cases versus 1 control, P = 7.0 × 10(-6)) and an association with a 6-year-earlier onset of disease (P = 2.3 × 10(-6)). This result suggests that loss-of-function alleles at CFH are likely to drive AMD risk. This finding represents one of the first instances in which a common complex disease variant has led to the discovery of a rare penetrant mutation.


Genetic Predisposition to Disease , Macular Degeneration/genetics , Penetrance , Aged , Aged, 80 and over , Case-Control Studies , Complement Factor H/genetics , Female , Haplotypes , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Linkage Disequilibrium , Macular Degeneration/pathology , Male , Middle Aged , Mutation, Missense , Polymorphism, Single Nucleotide , Principal Component Analysis , Risk Factors , Sequence Analysis, DNA
16.
Hum Mol Genet ; 20(18): 3699-709, 2011 Sep 15.
Article En | MEDLINE | ID: mdl-21665990

Despite significant progress in the identification of genetic loci for age-related macular degeneration (AMD), not all of the heritability has been explained. To identify variants which contribute to the remaining genetic susceptibility, we performed the largest meta-analysis of genome-wide association studies to date for advanced AMD. We imputed 6 036 699 single-nucleotide polymorphisms with the 1000 Genomes Project reference genotypes on 2594 cases and 4134 controls with follow-up replication of top signals in 5640 cases and 52 174 controls. We identified two new common susceptibility alleles, rs1999930 on 6q21-q22.3 near FRK/COL10A1 [odds ratio (OR) 0.87; P = 1.1 × 10(-8)] and rs4711751 on 6p12 near VEGFA (OR 1.15; P = 8.7 × 10(-9)). In addition to the two novel loci, 10 previously reported loci in ARMS2/HTRA1 (rs10490924), CFH (rs1061170, and rs1410996), CFB (rs641153), C3 (rs2230199), C2 (rs9332739), CFI (rs10033900), LIPC (rs10468017), TIMP3 (rs9621532) and CETP (rs3764261) were confirmed with genome-wide significant signals in this large study. Loci in the recently reported genes ABCA1 and COL8A1 were also detected with suggestive evidence of association with advanced AMD. The novel variants identified in this study suggest that angiogenesis (VEGFA) and extracellular collagen matrix (FRK/COL10A1) pathways contribute to the development of advanced AMD.


Collagen Type X/genetics , Genetic Variation , Genome-Wide Association Study , Macular Degeneration/genetics , Neoplasm Proteins/genetics , Protein-Tyrosine Kinases/genetics , Vascular Endothelial Growth Factor A/genetics , Case-Control Studies , Cohort Studies , Female , Genotype , Humans , Male , Polymorphism, Single Nucleotide , White People/genetics
17.
Proc Natl Acad Sci U S A ; 107(16): 7401-6, 2010 Apr 20.
Article En | MEDLINE | ID: mdl-20385819

We executed a genome-wide association scan for age-related macular degeneration (AMD) in 2,157 cases and 1,150 controls. Our results validate AMD susceptibility loci near CFH (P < 10(-75)), ARMS2 (P < 10(-59)), C2/CFB (P < 10(-20)), C3 (P < 10(-9)), and CFI (P < 10(-6)). We compared our top findings with the Tufts/Massachusetts General Hospital genome-wide association study of advanced AMD (821 cases, 1,709 controls) and genotyped 30 promising markers in additional individuals (up to 7,749 cases and 4,625 controls). With these data, we identified a susceptibility locus near TIMP3 (overall P = 1.1 x 10(-11)), a metalloproteinase involved in degradation of the extracellular matrix and previously implicated in early-onset maculopathy. In addition, our data revealed strong association signals with alleles at two loci (LIPC, P = 1.3 x 10(-7); CETP, P = 7.4 x 10(-7)) that were previously associated with high-density lipoprotein cholesterol (HDL-c) levels in blood. Consistent with the hypothesis that HDL metabolism is associated with AMD pathogenesis, we also observed association with AMD of HDL-c-associated alleles near LPL (P = 3.0 x 10(-3)) and ABCA1 (P = 5.6 x 10(-4)). Multilocus analysis including all susceptibility loci showed that 329 of 331 individuals (99%) with the highest-risk genotypes were cases, and 85% of these had advanced AMD. Our studies extend the catalog of AMD associated loci, help identify individuals at high risk of disease, and provide clues about underlying cellular pathways that should eventually lead to new therapies.


Genetic Predisposition to Disease , Lipoproteins, HDL/metabolism , Macular Degeneration/genetics , Tissue Inhibitor of Metalloproteinase-3/genetics , Alleles , Case-Control Studies , Chromosome Mapping , Complement Factor I/genetics , Genetic Variation , Genome-Wide Association Study , Genotype , Humans , Polymorphism, Single Nucleotide , Regression Analysis , Risk , Tissue Inhibitor of Metalloproteinase-3/physiology
18.
Proc Natl Acad Sci U S A ; 107(16): 7395-400, 2010 Apr 20.
Article En | MEDLINE | ID: mdl-20385826

Advanced age-related macular degeneration (AMD) is the leading cause of late onset blindness. We present results of a genome-wide association study of 979 advanced AMD cases and 1,709 controls using the Affymetrix 6.0 platform with replication in seven additional cohorts (totaling 5,789 unrelated cases and 4,234 unrelated controls). We also present a comprehensive analysis of copy-number variations and polymorphisms for AMD. Our discovery data implicated the association between AMD and a variant in the hepatic lipase gene (LIPC) in the high-density lipoprotein cholesterol (HDL) pathway (discovery P = 4.53e-05 for rs493258). Our LIPC association was strongest for a functional promoter variant, rs10468017, (P = 1.34e-08), that influences LIPC expression and serum HDL levels with a protective effect of the minor T allele (HDL increasing) for advanced wet and dry AMD. The association we found with LIPC was corroborated by the Michigan/Penn/Mayo genome-wide association study; the locus near the tissue inhibitor of metalloproteinase 3 was corroborated by our replication cohort for rs9621532 with P = 3.71e-09. We observed weaker associations with other HDL loci (ABCA1, P = 9.73e-04; cholesterylester transfer protein, P = 1.41e-03; FADS1-3, P = 2.69e-02). Based on a lack of consistent association between HDL increasing alleles and AMD risk, the LIPC association may not be the result of an effect on HDL levels, but it could represent a pleiotropic effect of the same functional component. Results implicate different biologic pathways than previously reported and provide new avenues for prevention and treatment of AMD.


Gene Expression Regulation , Genome-Wide Association Study , Lipase/genetics , Lipase/physiology , Macular Degeneration/genetics , Alleles , Case-Control Studies , Cholesterol, HDL/metabolism , Delta-5 Fatty Acid Desaturase , Genotype , Humans , Lipids/chemistry , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Reverse Transcriptase Polymerase Chain Reaction , Risk , Tissue Inhibitor of Metalloproteinase-3/antagonists & inhibitors
19.
Hum Mol Genet ; 18(R2): R146-55, 2009 Oct 15.
Article En | MEDLINE | ID: mdl-19808790

Peripheral sensory perception is established through an elaborate network of specialized neurons that mediate the translation of extraorganismal stimuli through the use of a broad array of receptors and downstream effector molecules. Studies of human genetic disorders, as well as mouse and other animal models, have identified some of the key molecules necessary for peripheral innervation and function. These findings have, in turn, yielded new insights into the developmental networks and homeostatic mechanisms necessary for the transformation of external stimuli into interpretable electrical impulses. In this review, we will summarize and discuss some of the genes/proteins implicated in two particular aspects of sensory perception, thermosensation and mechanosensation, highlighting pathways whose perturbation leads to both isolated and syndromic sensory deficits.


Genetic Diseases, Inborn/physiopathology , Mechanotransduction, Cellular/physiology , Perception/physiology , Temperature , Animals , Humans , Neurogenesis , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism
20.
Nat Genet ; 41(6): 739-45, 2009 Jun.
Article En | MEDLINE | ID: mdl-19430481

Despite rapid advances in the identification of genes involved in disease, the predictive power of the genotype remains limited, in part owing to poorly understood effects of second-site modifiers. Here we demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in Meckel-Gruber (MKS) and Joubert (JBTS) syndromes, is associated with the development of retinal degeneration in individuals with ciliopathies caused by mutations in other genes. As part of our resequencing efforts of the ciliary proteome, we identified several putative loss-of-function RPGRIP1L mutations, including one common variant, A229T. Multiple genetic lines of evidence showed this allele to be associated with photoreceptor loss in ciliopathies. Moreover, we show that RPGRIP1L interacts biochemically with RPGR, loss of which causes retinal degeneration, and that the Thr229-encoded protein significantly compromises this interaction. Our data represent an example of modification of a discrete phenotype of syndromic disease and highlight the importance of a multifaceted approach for the discovery of modifier alleles of intermediate frequency and effect.


Adaptor Proteins, Signal Transducing/genetics , Genetic Variation , Retinal Degeneration/genetics , Alleles , Animals , Bardet-Biedl Syndrome/genetics , Ciliary Body/physiopathology , Europe/epidemiology , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Mutation , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , Retinal Degeneration/epidemiology , Retinal Degeneration/prevention & control , Retinitis Pigmentosa/enzymology , Retinitis Pigmentosa/genetics , Uveitis/epidemiology , Uveitis/genetics , Zebrafish/genetics
...