Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Intern Med J ; 52(9): 1633-1637, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36100570

RESUMEN

Acute ischaemic strokes occur despite the use of direct oral anticoagulants (DOACs). A retrospective review was conducted at a high-volume primary stroke centre over a 3-year period to assess the acute management of stroke presentations in patients prescribed DOACs. During the time period of the study, 103 of 195 anticoagulated stroke patients presented within the timeframe for thrombolysis and only 15 patients had DOAC plasma level assays performed. Of these 103, 5 received thrombolysis; however, DOAC level was not a factor in these cases.


Asunto(s)
Anticoagulantes , Accidente Cerebrovascular , Administración Oral , Anticoagulantes/uso terapéutico , Humanos , Estudios Retrospectivos , Factores de Riesgo , Accidente Cerebrovascular/tratamiento farmacológico
2.
PLoS One ; 8(10): e77032, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24204727

RESUMEN

Kv11.1 potassium channels are important for regulation of the normal rhythm of the heartbeat. Reduced activity of Kv11.1 channels causes long QT syndrome type 2, a disorder that increases the risk of cardiac arrhythmias and sudden cardiac arrest. Kv11.1 channels are members of the KCNH subfamily of voltage-gated K(+) channels. However, they also share many similarities with the cyclic nucleotide gated ion channel family, including having a cyclic nucleotide-binding homology (cNBH) domain. Kv11.1 channels, however, are not directly regulated by cyclic nucleotides. Recently, crystal structures of the cNBH domain from mEAG and zELK channels, both members of the KCNH family of voltage-gated potassium channels, revealed that a C-terminal ß9-strand in the cNBH domain occupied the putative cyclic nucleotide-binding site thereby precluding binding of cyclic nucleotides. Here we show that mutations to residues in the ß9-strand affect the stability of the open state relative to the closed state of Kv11.1 channels. We also show that disrupting the structure of the ß9-strand reduces the stability of the inactivated state relative to the open state. Clinical mutations located in this ß9-strand result in reduced trafficking efficiency, which suggests that binding of the C-terminal ß9-strand to the putative cyclic nucleotide-binding pocket is also important for assembly and trafficking of Kv11.1 channels.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Mutación , Nucleótidos Cíclicos/química , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Células HEK293 , Humanos , Enlace de Hidrógeno , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Nucleótidos Cíclicos/metabolismo , Oocitos/metabolismo , Oocitos/fisiología , Unión Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Xenopus laevis
3.
J Gen Physiol ; 140(3): 293-306, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22891279

RESUMEN

Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/fisiología , Activación del Canal Iónico , Animales , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Fluorometría , Eliminación de Gen , Humanos , Mutación Missense , Estructura Terciaria de Proteína , Xenopus
4.
PLoS One ; 7(2): e31640, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22359612

RESUMEN

Human ether-à-go-go-related gene (hERG) K(+) channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4-S5 linker, which couples movement of the voltage sensor domain to opening of the activation gate at the distal end of the inner helix of the pore domain. It has also been suggested that cytosolic domains may interact with the S4-S5 linker to regulate activation and deactivation kinetics. Here, we show that the solution structure of a peptide corresponding to the S4-S5 linker of hERG contains an amphipathic helix. The effects of mutations at the majority of residues in the S4-S5 linker of hERG were consistent with the previously identified role in coupling voltage sensor movement to the activation gate. However, mutations to Ser543, Tyr545, Gly546 and Ala548 had more complex phenotypes indicating that these residues are involved in additional interactions. We propose a model in which the S4-S5 linker, in addition to coupling VSD movement to the activation gate, also contributes to interactions that stabilise the closed state and a separate set of interactions that stabilise the open state. The S4-S5 linker therefore acts as a signal integrator and plays a crucial role in the slow deactivation kinetics of the channel.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Activación del Canal Iónico , Humanos , Cinética , Mutación , Conformación Proteica
5.
Nat Struct Mol Biol ; 18(1): 35-41, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21170050

RESUMEN

The potassium channel selectivity filter both discriminates between K(+) and sodium ions and contributes to gating of ion flow. Static structures of conducting (open) and nonconducting (inactivated) conformations of this filter are known; however, the sequence of protein rearrangements that connect these two states is not. We show that closure of the selectivity filter gate in the human K(v)11.1 K(+) channel (also known as hERG, for ether-a-go-go-related gene), a key regulator of the rhythm of the heartbeat, is initiated by K(+) exit, followed in sequence by conformational rearrangements of the pore domain outer helix, extracellular turret region, voltage sensor domain, intracellular domains and pore domain inner helix. In contrast to the simple wave-like sequence of events proposed for opening of ligand-gated ion channels, a complex spatial and temporal sequence of widespread domain motions connect the open and inactivated states of the K(v)11.1 K(+) channel.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Activación del Canal Iónico/fisiología , Potasio/metabolismo , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/fisiología , Humanos , Cinética , Estructura Terciaria de Proteína
6.
Am J Physiol Regul Integr Comp Physiol ; 293(6): R2267-78, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17855497

RESUMEN

Circulating ANG II modulates the baroreceptor reflex control of heart rate (HR), at least partly via activation of ANG II type 1 (AT1) receptors on neurons in the area postrema. In this study, we tested the hypothesis that the effects of circulating ANG II on the baroreflex also depend on AT1 receptors within the nucleus tractus solitarius (NTS). In confirmation of previous studies in other species, increases in arterial pressure induced by intravenous infusion of ANG II had little effect on HR in urethane-anesthetized rats, in contrast to the marked bradycardia evoked by equipressor infusion of phenylephrine. In the presence of a continuous background infusion of ANG II, the baroreflex control of HR was shifted to higher levels of HR but had little effect on the baroreflex control of renal sympathetic activity. The modulatory effects of circulating ANG II on the cardiac baroreflex were significantly reduced by microinjection of candesartan, an AT1 receptor antagonist, into the area postrema and virtually abolished by microinjections of candesartan into the medial NTS. After acute ablation of the area postrema, a background infusion of ANG II still caused an upward shift of the cardiac baroreflex curve, which was reversed by subsequent microinjection of candesartan into the medial NTS. The results indicate that AT1 receptors in the medial NTS play a critical role in modulation of the cardiac baroreflex by circulating ANG II via mechanisms that are at least partly independent of AT1 receptors in the area postrema.


Asunto(s)
Angiotensina II/sangre , Barorreflejo/fisiología , Presorreceptores/fisiología , Receptor de Angiotensina Tipo 1/metabolismo , Núcleo Solitario/fisiología , Adaptación Fisiológica/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley
7.
Brain Res ; 1036(1-2): 70-6, 2005 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-15725403

RESUMEN

Microinjections of low doses (in the femtomolar or low picomolar range) of angiotensin II (Ang II) into the nucleus tractus solitarii (NTS) evoke depressor responses. In this study we have mapped in the rat the precise location of the subregion within the NTS at which Ang II evokes significant sympathoinhibitory and depressor responses. Microinjections of 1 pmol of Ang II evoked large decreases (>or=20% of baseline) in renal sympathetic nerve activity (RSNA), from a highly restricted region in the medial NTS, at or very close to the level 0.2 mm caudal to the obex. Microinjections of the same dose of Ang II into the commissural or lateral NTS at the same rostrocaudal level, or into the medial and lateral NTS at the level of the obex evoked significantly smaller sympathoinhibitory responses, while microinjections into more rostral or caudal levels of the NTS evoked significant sympathoinhibitory responses even less frequently. In most cases (71%), the sympathoinhibitory responses were accompanied by depressor responses, the magnitudes of which were also greater within the medial NTS at the level 0.2 mm caudal to obex, as compared to the surrounding subregions. The results demonstrate that the cardiovascular effects of Ang II in the NTS are highly site-specific. Taken together with previous studies, the results also indicate that the neurons in the NTS that mediate the Ang II-evoked sympathoinhibition are a discrete subgroup of the population of sympathoinhibitory neurons within the nucleus.


Asunto(s)
Angiotensina II/metabolismo , Vías Eferentes/fisiología , Hipotensión/fisiopatología , Riñón/inervación , Núcleo Solitario/fisiología , Sistema Nervioso Simpático/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Angiotensina II/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Mapeo Encefálico , Vías Eferentes/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Hipotensión/inducido químicamente , Riñón/efectos de los fármacos , Riñón/fisiología , Masculino , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/fisiología , Circulación Renal/efectos de los fármacos , Circulación Renal/fisiología , Núcleo Solitario/anatomía & histología , Núcleo Solitario/efectos de los fármacos , Fibras Simpáticas Posganglionares/efectos de los fármacos , Fibras Simpáticas Posganglionares/fisiología , Sistema Nervioso Simpático/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA