Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003734

RESUMEN

Cisplatin is a commonly used chemotherapeutic agent with proven efficacy in treating various malignancies, including testicular, ovarian, cervical, breast, bladder, head and neck, and lung cancer. Cisplatin is also used to treat tumors in children, such as neuroblastoma, osteosarcoma, and hepatoblastoma. However, its clinical use is limited by severe side effects, including ototoxicity, nephrotoxicity, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, and retinal toxicity. Cisplatin-induced ototoxicity manifests as irreversible, bilateral, high-frequency sensorineural hearing loss in 40-60% of adults and in up to 60% of children. Hearing loss can lead to social isolation, depression, and cognitive decline in adults, and speech and language developmental delays in children. Cisplatin causes hair cell death by forming DNA adducts, mitochondrial dysfunction, oxidative stress, and inflammation, culminating in programmed cell death by apoptosis, necroptosis, pyroptosis, or ferroptosis. Contemporary medical interventions for cisplatin ototoxicity are limited to prosthetic devices, such as hearing aids, but these have significant limitations because the cochlea remains damaged. Recently, the U.S. Food and Drug Administration (FDA) approved the first therapy, sodium thiosulfate, to prevent cisplatin-induced hearing loss in pediatric patients with localized, non-metastatic solid tumors. Other pharmacological treatments for cisplatin ototoxicity are in various stages of preclinical and clinical development. This narrative review aims to highlight the molecular mechanisms involved in cisplatin-induced ototoxicity, focusing on cochlear inflammation, and shed light on potential antioxidant and anti-inflammatory therapeutic interventions to prevent or mitigate the ototoxic effects of cisplatin. We conducted a comprehensive literature search (Google Scholar, PubMed) focusing on publications in the last five years.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Sordera , Pérdida Auditiva , Osteosarcoma , Ototoxicidad , Humanos , Niño , Cisplatino/efectos adversos , Antineoplásicos/efectos adversos , Ototoxicidad/etiología , Ototoxicidad/tratamiento farmacológico , Pérdida Auditiva/tratamiento farmacológico , Osteosarcoma/tratamiento farmacológico , Neoplasias Óseas/tratamiento farmacológico , Inflamación/tratamiento farmacológico
2.
Antioxidants (Basel) ; 12(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37371955

RESUMEN

Tightly regulated and robust mitochondrial activities are critical for normal hearing. Previously, we demonstrated that Fus1/Tusc2 KO mice with mitochondrial dysfunction exhibit premature hearing loss. Molecular analysis of the cochlea revealed hyperactivation of the mTOR pathway, oxidative stress, and altered mitochondrial morphology and quantity, suggesting compromised energy sensing and production. Here, we investigated whether the pharmacological modulation of metabolic pathways using rapamycin (RAPA) or 2-deoxy-D-glucose (2-DG) supplementation can protect against hearing loss in female Fus1 KO mice. Additionally, we aimed to identify mitochondria- and Fus1/Tusc2-dependent molecular pathways and processes critical for hearing. We found that inhibiting mTOR or activating alternative mitochondrial energetic pathways to glycolysis protected hearing in the mice. Comparative gene expression analysis revealed the dysregulation of critical biological processes in the KO cochlea, including mitochondrial metabolism, neural and immune responses, and the cochlear hypothalamic-pituitary-adrenal axis signaling system. RAPA and 2-DG mostly normalized these processes, although some genes showed a drug-specific response or no response at all. Interestingly, both drugs resulted in a pronounced upregulation of critical hearing-related genes not altered in the non-treated KO cochlea, including cytoskeletal and motor proteins and calcium-linked transporters and voltage-gated channels. These findings suggest that the pharmacological modulation of mitochondrial metabolism and bioenergetics may restore and activate processes critical for hearing, thereby protecting against hearing loss.

3.
Hear Res ; 434: 108783, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37167889

RESUMEN

Sensorineural hearing loss (SNHL) can either be genetically inherited or acquired as a result of aging, noise exposure, or ototoxic drugs. Although the precise pathophysiological mechanisms underlying SNHL remain unclear, an overwhelming body of evidence implicates mitochondrial dysfunction and oxidative stress playing a central etiological role. With its high metabolic demands, the cochlea, particularly the sensory hair cells, stria vascularis, and spiral ganglion neurons, is vulnerable to the damaging effects of mitochondrial reactive oxygen species (ROS). Mitochondrial dysfunction and consequent oxidative stress in cochlear cells can be caused by inherited mitochondrial DNA (mtDNA) mutations (hereditary hearing loss and aminoglycoside-induced ototoxicity), accumulation of acquired mtDNA mutations with age (age-related hearing loss), mitochondrial overdrive and calcium dysregulation (noise-induced hearing loss and cisplatin-induced ototoxicity), or accumulation of ototoxic drugs within hair cell mitochondria (drug-induced hearing loss). In this review, we provide an overview of our current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of SNHL caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs. We also explore the advancements in antioxidant therapies for the different forms of acquired SNHL that are being evaluated in preclinical and clinical studies.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Pérdida Auditiva Sensorineural , Ototoxicidad , Humanos , Ototoxicidad/metabolismo , Pérdida Auditiva Sensorineural/inducido químicamente , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Estrés Oxidativo , Pérdida Auditiva Provocada por Ruido/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Mitocondrial/uso terapéutico , Mitocondrias/metabolismo
4.
Hear Res ; 423: 108564, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35864018

RESUMEN

Reports have proposed a putative role for ßV spectrin in outer hair cells (OHCs) of the cochlea. In an ongoing investigation of the role of the cytoskeleton in electromotility, we tested mice with a targeted exon deletion of ßV spectrin (Spnb5), and unexpectedly find that Spnb5(-/-) animals' auditory thresholds are unaffected. Similarly, these mice have normal OHC electromechanical activity (otoacoustic emissions) and non-linear capacitance. In contrast, magnitudes of auditory brainstem response (ABR) wave 1-amplitudes are significantly reduced. Evidence of a synaptopathy was absent with normal hair cell CtBP2 counts. In Spnb5(-/-) mice, the number of afferent and efferent nerve fibers is decreased. Consistent with this data, Spnb5 mRNA is present in Type I and II spiral ganglion neurons, but undetectable in OHCs. Together, these data establish that ßV spectrin is important for hearing, affecting neuronal structure and function. Significantly, these data support that ßV spectrin as is not functionally important to OHCs as has been previously suggested.


Asunto(s)
Células Ciliadas Auditivas Externas , Espectrina , Animales , Cóclea/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico , Células Ciliadas Auditivas Externas/fisiología , Ratones , Ratones Noqueados , Emisiones Otoacústicas Espontáneas , Espectrina/genética , Espectrina/metabolismo
5.
Nat Commun ; 13(1): 290, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022426

RESUMEN

The mammalian outer hair cell (OHC) protein prestin (Slc26a5) differs from other Slc26 family members due to its unique piezoelectric-like property that drives OHC electromotility, the putative mechanism for cochlear amplification. Here, we use cryo-electron microscopy to determine prestin's structure at 3.6 Å resolution. Prestin is structurally similar to the anion transporter Slc26a9. It is captured in an inward-open state which may reflect prestin's contracted state. Two well-separated transmembrane (TM) domains and two cytoplasmic sulfate transporter and anti-sigma factor antagonist (STAS) domains form a swapped dimer. The transmembrane domains consist of 14 transmembrane segments organized in two 7+7 inverted repeats, an architecture first observed in the bacterial symporter UraA. Mutation of prestin's chloride binding site removes salicylate competition with anions while retaining the prestin characteristic displacement currents (Nonlinear Capacitance), undermining the extrinsic voltage sensor hypothesis for prestin function.


Asunto(s)
Microscopía por Crioelectrón , Células Ciliadas Auditivas Externas/metabolismo , Transportadores de Sulfato/química , Animales , Proteínas de Transporte de Anión , Sitios de Unión , Células CHO , Cricetulus , Gerbillinae , Células Ciliadas Vestibulares/metabolismo , Transporte Iónico , Proteínas de la Membrana/química , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Dominios Proteicos
6.
Hear Res ; 423: 108373, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34776274

RESUMEN

The OHC drives cochlear amplification, and prestin activity is the basis. The frequency response of nonlinear capacitance (NLC), which is a ratiometric measure of prestin's voltage-sensor charge movement (dQp/dVm), depends on the location of AC voltage excitation along prestin's operating voltage range, being slowest at the voltage (Vh) where NLC peaks. Here we directly investigate the coupling between prestin charge movement (Qp) and electromotility (eM) at frequencies up to 6.25 kHz, and find tight correspondence between the two at operating voltages displaced from Vh. Near Vh, however, eM shows a slower frequency response than Qp. We reason that coupling is more susceptible to molecular/cellular loads at Vh, where prestin compliance is expected to be maximal. Recent cryo-EM studies have begun to shed light on structural features of prestin that impact its performance against loads. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.


Asunto(s)
Células Ciliadas Auditivas Externas , Células Ciliadas Vestibulares , Cóclea , Capacidad Eléctrica , Células Ciliadas Auditivas Externas/fisiología , Técnicas de Placa-Clamp
7.
Sci Rep ; 11(1): 16149, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373481

RESUMEN

The outer hair cell (OHC) membrane harbors a voltage-dependent protein, prestin (SLC26a5), in high density, whose charge movement is evidenced as a nonlinear capacitance (NLC). NLC is bell-shaped, with its peak occurring at a voltage, Vh, where sensor charge is equally distributed across the plasma membrane. Thus, Vh provides information on the conformational state of prestin. Vh is sensitive to membrane tension, shifting to positive voltage as tension increases and is the basis for considering prestin piezoelectric (PZE). NLC can be deconstructed into real and imaginary components that report on charge movements in phase or 90 degrees out of phase with AC voltage. Here we show in membrane macro-patches of the OHC that there is a partial trade-off in the magnitude of real and imaginary components as interrogation frequency increases, as predicted by a recent PZE model (Rabbitt in Proc Natl Acad Sci USA 17:21880-21888, 2020). However, we find similar behavior in a simple 2-state voltage-dependent kinetic model of prestin that lacks piezoelectric coupling. At a particular frequency, Fis, the complex component magnitudes intersect. Using this metric, Fis, which depends on the frequency response of each complex component, we find that initial Vh influences Fis; thus, by categorizing patches into groups of different Vh, (above and below - 30 mV) we find that Fis is lower for the negative Vh group. We also find that the effect of membrane tension on complex NLC is dependent, but differentially so, on initial Vh. Whereas the negative group exhibits shifts to higher frequencies for increasing tension, the opposite occurs for the positive group. Despite complex component trade-offs, the low-pass roll-off in absolute magnitude of NLC, which varies little with our perturbations and is indicative of diminishing total charge movement, poses a challenge for a role of voltage-driven prestin in cochlear amplification at very high frequencies.


Asunto(s)
Células Ciliadas Auditivas Externas/fisiología , Proteínas/fisiología , Estimulación Acústica , Animales , Cóclea/fisiología , Capacidad Eléctrica , Cobayas , Cinética , Mecanotransducción Celular/fisiología , Potenciales de la Membrana/fisiología , Modelos Biológicos , Dinámicas no Lineales , Técnicas de Placa-Clamp , Conformación Proteica , Proteínas/química
8.
Sci Rep ; 11(1): 2372, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504822

RESUMEN

Neuronal calcium sensor 1 (NCS1) regulates a wide range of cellular functions throughout the mammalian nervous systems. Altered NCS1 expression is associated with neurodevelopmental and neurodegenerative diseases. Previous studies focused on affective and cognitive behaviors in NCS1 knockout (KO) mice, but little is known about the physiological and pathological states associated with the loss of NCS1 in the peripheral nervous system. We previously reported that NCS1 expression was reduced following paclitaxel-induced peripheral neuropathy. Here, we comprehensively investigated the phenotypes of NCS1-KO mice through a battery of behavioral tests examining both central and peripheral nervous systems. Generally, only mild differences were observed in thermal sensation and memory acquisition between NCS1-WT and -KO male mice, but not in female mice. No differences were observed in motor performance, affective behaviors, and hearing in both sexes. These results suggest that NCS1 plays a modulatory role in sensory perceptions and cognition, particularly in male mice. NCS1 has been proposed as a pharmacological target for various diseases. Therefore, the sex-specific effects of NCS1 loss may be of clinical interest. As we examined a constitutive KO model, future studies focusing on various conditional KO models will further elucidate the precise physiological significance of NCS1.


Asunto(s)
Proteínas Sensoras del Calcio Neuronal/deficiencia , Neuropéptidos/deficiencia , Fenotipo , Desempeño Psicomotor , Animales , Conducta Animal , Masculino , Ratones , Ratones Noqueados , Actividad Motora , Estimulación Física , Sensación , Temperatura
9.
J Neurosci ; 39(24): 4797-4813, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-30936239

RESUMEN

Fragile X syndrome (FXS) is characterized by hypersensitivity to sensory stimuli, including environmental sounds. We compared the auditory brainstem response (ABR) recorded in vivo in mice lacking the gene (Fmr1-/y ) for fragile X mental retardation protein (FMRP) with that in wild-type animals. We found that ABR wave I, which represents input from the auditory nerve, is reduced in Fmr1-/y animals, but only at high sound levels. In contrast, wave IV, which represents the activity of auditory brainstem nuclei is enhanced at all sound levels, suggesting that loss of FMRP alters the central processing of auditory signals. Current-clamp recordings of neurons in the medial nucleus of the trapezoid body in the auditory brainstem revealed that, in contrast to neurons from wild-type animals, sustained depolarization triggers repetitive firing rather than a single action potential. In voltage-clamp recordings, K+ currents that activate at positive potentials ("high-threshold" K+ currents), which are required for high-frequency firing and are carried primarily by Kv3.1 channels, are elevated in Fmr1-/y mice, while K+ currents that activate near the resting potential and inhibit repetitive firing are reduced. We therefore tested the effects of AUT2 [((4-({5-[(4R)-4-ethyl-2,5-dioxo-1-imidazolidinyl]-2-pyridinyl}oxy)-2-(1-methylethyl) benzonitrile], a compound that modulates Kv3.1 channels. AUT2 reduced the high-threshold K+ current and increased the low-threshold K+ currents in neurons from Fmr1-/y animals by shifting the activation of the high-threshold current to more negative potentials. This reduced the firing rate and, in vivo, restored wave IV of the ABR. Our results from animals of both sexes suggest that the modulation of the Kv3.1 channel may have potential for the treatment of sensory hypersensitivity in patients with FXS.SIGNIFICANCE STATEMENT mRNA encoding the Kv3.1 potassium channel was one of the first described targets of the fragile X mental retardation protein (FMRP). Fragile X syndrome is caused by loss of FMRP and, in humans and mice, causes hypersensitivity to auditory stimuli. We found that components of the auditory brain response (ABR) corresponding to auditory brainstem activity are enhanced in mice lacking FMRP. This is accompanied by hyperexcitability and altered potassium currents in auditory brainstem neurons. Treatment with a drug that alters the voltage dependence of Kv3.1 channels normalizes the imbalance of potassium currents, as well as ABR responses in vivo, suggesting that such compounds may be effective in treating some symptoms of fragile X syndrome.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Canales de Potasio Shaw/metabolismo , Animales , Vías Auditivas , Percepción Auditiva , Tronco Encefálico/efectos de los fármacos , Núcleo Coclear/fisiología , Fenómenos Electrofisiológicos , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Femenino , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Hidantoínas/farmacología , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Piridinas/farmacología
10.
Aging (Albany NY) ; 9(3): 627-649, 2017 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-28351997

RESUMEN

Decreased energy production and increased oxidative stress are considered to be major contributors to aging and aging-associated pathologies. The role of mitochondrial calcium homeostasis has also been highlighted as an important factor affecting different pathological conditions. Here, we present evidence that loss of a small mitochondrial protein Fus1 that maintains mitochondrial homeostasis results in premature aging, aging-associated pathologies, and decreased survival. We showed that Fus1KO mice develop multiple early aging signs including lordokyphosis, lack of vigor, inability to accumulate fat, reduced ability to tolerate stress, and premature death. Other prominent pathological changes included low sperm counts, compromised ability of adult stem cells to repopulate tissues, and chronic inflammation. At the molecular level, we demonstrated that mitochondria of Fus1 KO cells have low reserve respiratory capacity (the ability to produce extra energy during sudden energy demanding situations), and show significantly altered dynamics of cellular calcium response.Our recent studies on early hearing and memory loss in Fus1 KO mice combined with the new data presented here suggest that calcium and energy homeostasis controlled by Fus1 may be at the core of its aging-regulating activities. Thus, Fus1 protein and Fus1-dependent pathways and processes may represent new tools and targets for anti-aging strategies.


Asunto(s)
Envejecimiento Prematuro/metabolismo , Envejecimiento/metabolismo , Calcio/metabolismo , Metabolismo Energético/genética , Proteínas Supresoras de Tumor/metabolismo , Adiposidad/genética , Envejecimiento/genética , Envejecimiento Prematuro/genética , Animales , Señalización del Calcio , Homeostasis/genética , Inflamación/genética , Inflamación/metabolismo , Masculino , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Recuento de Espermatozoides , Motilidad Espermática/genética , Proteínas Supresoras de Tumor/genética
11.
Antioxid Redox Signal ; 27(8): 489-509, 2017 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-28135838

RESUMEN

AIMS: Acquired hearing loss is a worldwide epidemic that affects all ages. It is multifactorial in etiology with poorly characterized molecular mechanisms. Mitochondria are critical components in hearing. Here, we aimed to identify the mechanisms of mitochondria-dependent hearing loss using Fus1 KO mice, our novel model of mitochondrial dysfunction/oxidative stress. RESULTS: Using auditory brainstem responses (ABRs), we characterized the Fus1 KO mouse as a novel, clinically relevant model of age-related hearing loss (ARHL) of metabolic etiology. We demonstrated early decline of the endocochlear potential (EP) that may occur due to severe mitochondrial and vascular pathologies in the Fus1 KO cochlear stria vascularis. We showed that pathological alterations in antioxidant (AO) and nutrient and energy sensing pathways (mTOR and PTEN/AKT) occur in cochleae of young Fus1 KO mice before major hearing loss. Importantly, short-term AO treatment corrected pathological molecular changes, while longer AO treatment restored EP, improved ABR parameters, restored mitochondrial structure, and delayed the development of hearing loss in the aging mouse. INNOVATION: Currently, no molecular mechanisms linked to metabolic ARHL have been identified. We established pathological and molecular mechanisms that link the disease to mitochondrial dysfunction and oxidative stress. CONCLUSION: Since chronic mitochondrial dysfunction is common in many patients, it could lead to developing hearing loss that can be alleviated/rescued by AO treatment. Our study creates a framework for clinical trials and introduces the Fus1 KO model as a powerful platform for developing novel therapeutic strategies to prevent/delay hearing loss associated with mitochondrial dysfunction. Antioxid. Redox Signal. 27, 489-509.


Asunto(s)
Oído Interno/fisiopatología , Pérdida Auditiva/diagnóstico por imagen , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Acetilcisteína/administración & dosificación , Acetilcisteína/farmacología , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Oído Interno/diagnóstico por imagen , Oído Interno/efectos de los fármacos , Oído Interno/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Técnicas de Inactivación de Genes , Pérdida Auditiva/tratamiento farmacológico , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Humanos , Ratones , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Ganglio Espiral de la Cóclea/diagnóstico por imagen , Ganglio Espiral de la Cóclea/efectos de los fármacos , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/fisiopatología , Serina-Treonina Quinasas TOR/metabolismo
12.
Front Aging Neurosci ; 8: 268, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27895577

RESUMEN

Insufficient advances in the development of effective therapeutic treatments of sporadic Alzheimer's Disease (sAD) to date are largely due to the lack of sAD-relevant animal models. While the vast majority of models do recapitulate AD's hallmarks of plaques and tangles by virtue of tau and/or beta amyloid overexpression, these models do not reflect the fact that in sAD (unlike familial AD) these genes are not risk factors per se and that other mechanisms like oxidative stress, metabolic dysregulation and inflammation play key roles in AD etiology. Here we characterize and propose the Fus1 KO mice that lack a mitochondrial protein Fus1/Tusc2 as a new sAD model. To establish sAD relevance, we assessed sAD related deficits in Fus1 KO and WT adult mice of 4-5 months old, the equivalent human age when the earliest cognitive and olfactory sAD symptoms arise. Fus1 KO mice showed oxidative stress (increased levels of ROS, decreased levels of PRDX1), disruption of metabolic homeostasis (decreased levels of ACC2, increased phosphorylation of AMPK), autophagy (decreased levels of LC3-II), PKC (decreased levels of RACK1) and calcium signaling (decreased levels of Calb2) in the olfactory bulb and/or hippocampus. Mice were behaviorally tested using objective and accurate video tracking (Noldus), in which Fus1 KO mice showed clear deficits in olfactory memory (decreased habituation/cross-habituation in the short and long term), olfactory guided navigation memory (inability to reduce their latency to find the hidden cookie), spatial memory (learning impairments on finding the platform in the Morris water maze) and showed more sleep time during the diurnal cycle. Fus1 KO mice did not show clear deficits in olfactory perception (cross-habituation), association memory (passive avoidance) or in species-typical behavior (nest building) and no increased anxiety (open field, light-dark box) or depression/anhedonia (sucrose preference) at this relatively young age. These neurobehavioral deficits of the Fus1 KO mice at this relatively young age are highly relevant to sAD, making them suitable for effective research on pharmacological targets in the context of early intervention of sAD.

13.
Histochem Cell Biol ; 146(2): 219-30, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27109494

RESUMEN

Oxidative stress has been established as the key mechanism of the cochlear damage underlying noise-induced hearing loss, however, emerging evidence suggests that cochlear inflammation may also be a major contributor. This study aimed to improve our understanding of the cochlear inflammatory response associated with acute and chronic noise exposure. C57BL/6 mice were exposed to acute traumatic noise (100 dBSPL, 8-16 kHz for 24 h) and their cochleae collected at various intervals thereafter, up to 7 days. Using quantitative RT-PCR and immunohistochemistry, changes in expression levels of proinflammatory cytokines (TNF-α, IL-1ß), chemokines (CCL2) and cell adhesion molecules (ICAM-1) were studied. All gene transcripts displayed similar dynamics of expression, with an early upregulation at 6 h post-exposure, followed by a second peak at 7 days. ICAM-1 immunoexpression increased significantly in the inferior region of the spiral ligament, peaking 24 h post-exposure. The early expression of proinflammatory mediators likely mediates the recruitment and extravasation of inflammatory cells into the noise-exposed cochlea. The occurrence of the latter expression peak is not clear, but it may be associated with reparative processes initiated in response to cochlear damage. Chronic exposure to moderate noise (90 dBSPL, 8-16 kHz, 2 h/day, up to 4 weeks) also elicited an inflammatory response, reaching a maximum after 2 weeks, suggesting that cochlear damage and hearing loss associated with chronic environmental noise exposure may be linked to inflammatory processes in the cochlea. This study thus provides further insight into the dynamics of the cochlear inflammatory response induced by exposure to acute and chronic noise.


Asunto(s)
Cóclea/metabolismo , Cóclea/patología , Inflamación/metabolismo , Ruido/efectos adversos , Animales , Citocinas/genética , Citocinas/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA