Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Article En | MEDLINE | ID: mdl-38780894

BACKGROUND: Although physician-pharmacist collaborative clinics for diabetes management have been shown to be effective and cost-effective worldwide, there is limited understanding of the factors that influence their sustainable implementation. This study aims to identify the associated factors and provide sustainability strategy to better implement physician-pharmacist collaborative clinics for diabetes management in primary healthcare centers in China. METHODS: A sample of 43 participants were participated in face-to-face, in-depth, semi-structured interviews. Consolidated Framework for Implementation Research was used to identify facilitators and barriers to implementing physician-pharmacist collaborative clinics for diabetes management in primary healthcare centers, and to explore discriminating factors between low and high implementation units. A sustainable strategy repository based on dynamic sustainability framework was established to inform further implementation. RESULTS: This study demonstrated that clear recognition of intervention benefits, urgent needs of patients, adaptive and tailored plan, highly collaborative teamwork and leadership support were the major facilitators, while the major barriers included process complexity, large number and poor health literacy of patients in primary areas, inappropriate staffing arrangements, weak financial incentives and inadequate staff competencies. Six constructs were identified to distinguish between high and low implementation units. Sixteen strategies were developed to foster the implementation of physician-pharmacist collaborative clinics, targeting Intervention, Practice setting, and Ecological system. CONCLUSION: This qualitative study demonstrated facilitators and barriers to implementing physician-pharmacist collaborative clinics for diabetes management in primary healthcare centers and developed theory-based strategies for further promotion, which has the potential to improve the management of diabetes and other chronic diseases in under-resourced areas.

2.
Foot Ankle Clin ; 29(2): 321-331, 2024 Jun.
Article En | MEDLINE | ID: mdl-38679442

The majority of patients with an osteochondral lesion of the talus (OLT) report a history of trauma. Therefore, it is important to assess for concomitant ankle instability when dealing with patients with a symptomatic OLT. The History; Alignment; Ligaments; Others "(HALO)" approach can be a helpful tool in the evaluation of patients with an OLT. If conservative treatment fails, surgery may be indicated. Although there is a lack of comparative studies investigating the effect of stabilization procedures on cartilage repair, we believe that addressing instability is a key factor in improving patient outcome.


Ankle Joint , Cartilage, Articular , Joint Instability , Humans , Joint Instability/surgery , Joint Instability/prevention & control , Ankle Joint/surgery , Cartilage, Articular/injuries , Cartilage, Articular/surgery , Talus/injuries , Talus/surgery , Ankle Injuries/surgery
3.
Cell Metab ; 36(3): 511-525.e7, 2024 03 05.
Article En | MEDLINE | ID: mdl-38232735

Myopia is characterized of maladaptive increases in scleral fibroblast-to-myofibroblast transdifferentiation (FMT). Scleral hypoxia is a significant factor contributing to myopia, but how hypoxia induces myopia is poorly understood. Here, we showed that myopia in mice and guinea pigs was associated with hypoxia-induced increases in key glycolytic enzymes expression and lactate levels in the sclera. Promotion of scleral glycolysis or lactate production induced FMT and myopia; conversely, suppression of glycolysis or lactate production eliminated or inhibited FMT and myopia. Mechanistically, increasing scleral glycolysis-lactate levels promoted FMT and myopia via H3K18la, and this promoted Notch1 expression. Genetic analyses identified a significant enrichment of two genes encoding glycolytic enzymes, ENO2 and TPI1. Moreover, increasing sugar intake in guinea pigs not only induced myopia but also enhanced the response to myopia induction via the scleral glycolysis-lactate-histone lactylation pathway. Collectively, we suggest that scleral glycolysis contributes to myopia by promoting FMT via lactate-induced histone lactylation.


Histones , Myopia , Animals , Guinea Pigs , Mice , Histones/metabolism , Sclera/metabolism , Myopia/genetics , Myopia/metabolism , Lactic Acid/metabolism , Glycolysis , Hypoxia/metabolism
4.
J Gastrointest Oncol ; 13(4): 1793-1804, 2022 Aug.
Article En | MEDLINE | ID: mdl-36092343

Background: Colorectal cancer (CC) is one of the most prevalent malignancies worldwide. Nonetheless, its pathogenicity and molecular mechanisms have not been completely elucidated yet. The potential clinical value of circular RNAs (circRNAs) in tumor diagnosis, treatment, and prognosis has received considerable attention. Methods: Here, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) examined the levels of circular ZFR (circZFR) in CC cells. The expression of circZFR was knocked down in CC cells and cell viability was detected using Cell Counting Kit-8 (CCK-8) and colony formation assays. Cell cycle progression was assessed by flow cytometry and the expression levels of cyclin-associated proteins were detected by western blot analysis. The transferase dUTP nick end labeling (TUNEL) assay was used to detect apoptosis and western blot analysis was used to evaluate the expression levels of apoptosis-associated proteins. Subsequently, the interactions between circZFR and microRNA (miR)-147a and between miR-147a and CDK2 associated cullin domain 1 (CACUL1) were predicted by the Encyclopedia of RNA Interactomes database and verified by luciferase reporter assays. Finally, plasmid transfection, CCK-8, and flow cytometry assays were used to explore the associated mechanism of action. Results: CircZFR was highly expressed in CC cell lines. Interference with its expression inhibited proliferation and induced G1/S cell cycle arrest and apoptosis in CC cells. The expression levels of miR-147a and CACUL1 were decreased and increased, respectively, in CC cells. These data demonstrated that circZFR could target miR-147a and CACUL1 to regulate the cell cycle and apoptosis of CC cells and, ultimately, promote the progression of CC. Conclusions: Knockdown of the expression of circZFR upregulated miR-147a expression and reduced CACUL1 expression levels, thereby inhibiting the proliferation of CC cells and inducing cell cycle arrest and apoptosis.

...