Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Anim Biosci ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38665074

Objective: Previous research reported that dietary addition with phytosterols improved the energy utilisation of the rumen microbiome, suggesting its potential to alleviate the negative energy balance of perinatal cows. This experiment aimed to explore the effects of feeding phytosterols on the metabolic status of perinatal cows through plasma metabolomics and faecal bacteria metabolism. Methods: Ten perinatal Holstein cows (multiparous, 2 parities) with a similar calving date were selected four weeks before calving. After 7 days for adaptation, cows were allocated to two groups (n=5), which respectively received the basal rations supplementing commercial phytosterols at 0 and 200 mg/d during a 42-day experiment. The milk yield of each cow was recorded daily after calving. On days 1 and 42, blood and faeces samples were all collected from perinatal cows before morning feeding for analysing plasma biochemicals and metabolome, and faecal bacteria metabolism. Results: Dietary addition with phytosterols at 200 mg/d had no effects on plasma cholesterol and numerically increased milk yield by 1.82 kg/d (p>0.10) but attenuated their negative energy balance in perinatal cows as observed from the significantly decreased plasma level of ß-hydroxybutyric acid (p=0.002). Dietary addition with phytosterols significantly altered 12 and 15 metabolites (p<0.05) within the plasma and faeces of perinatal cows, respectively. Of these metabolites, 5 upregulated plasma fatty acids indicated an improved energy status (i.e., C18:1T, C14:0, C17:0, C18:0, and C16:0). Milk yield negatively correlated with plasma concentrations of ketone bodies (p=0.035) and 5-methoxytryptamine (p=0.039). Furthermore, dietary addition with phytosterols at 200 mg/d had no effects on fermentation characteristics and bacterial diversity of cow faeces (p>0.10) but improved potentially beneficial bacteria such as Christensenellaceae family (p<0.05) that positively correlated with feed efficiency. Conclusion: Dietary addition with phytosterols at 200 mg/d could effectively improve the energy status in perinatal cows by attenuating their negative energy balance.

2.
Animals (Basel) ; 14(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38672368

Pigs stand as a vital cornerstone in the realm of human sustenance, and the intricate composition of their intestinal microbiota wields a commanding influence over their nutritional and metabolic pathways. We employed multi-omic evaluations to identify microbial evidence associated with differential growth performance and metabolites, thereby offering theoretical support for the implementation of efficient farming practices for Tibetan pigs and establishing a robust foundation for enhancing pig growth and health. In this work, six Duroc × landrace × yorkshi (DLY) pigs and six Tibetan pigs were used for the experiment. Following humane euthanasia, a comprehensive analysis was undertaken to detect the presence of short-chain fatty acids (SCFAs), microbial populations, and metabolites within the colonic environment. Additionally, metabolites present within the plasma were also assessed. The outcomes of our analysis unveiled the key variables affecting the microbe changes causing the observed differences in production performance between these two distinct pig breeds. Specifically, noteworthy discrepancies were observed in the microbial compositions of DLY pigs, characterized by markedly higher levels of Alloprevotella and Prevotellaceae_UCG-003 (p < 0.05). These disparities, in turn, resulted in significant variations in the concentrations of acetic acid, propionic acid, and the cumulative SCFAs (p < 0.05). Consequently, the DLY pigs exhibited enhanced growth performance and overall well-being, which could be ascribed to the distinct metabolite profiles they harbored. Conversely, Tibetan pigs exhibited a significantly elevated relative abundance of the NK4A214_group, which consequently led to a pronounced increase in the concentration of L-cysteine. This elevation in L-cysteine content had cascading effects, further manifesting higher levels of taurine within the colon and plasma. It is noteworthy that taurine has the potential to exert multifaceted impacts encompassing microbiota dynamics, protein and lipid metabolism, as well as bile acid metabolism, all of which collectively benefit the pigs. In light of this, Tibetan pigs showcased enhanced capabilities in bile acid metabolism. In summation, our findings suggest that DLY pigs excel in their proficiency in short-chain fatty acid metabolism, whereas Tibetan pigs exhibit a more pronounced competence in the realm of bile acid metabolism. These insights underscore the potential for future studies to leverage these breed-specific differences, thereby contributing to the amelioration of production performance within these two distinct pig breeds.

3.
J Anim Sci Biotechnol ; 15(1): 34, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38419130

BACKGROUND: Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed. Our previous study showed that feeding bio-fermented rice straw (BF) improved the feed intake and weight gain of sheep. However, it remains unclear why feeding BF to sheep increased their feed intake and weight gain. Therefore, the purposes of this research were to investigate how the rumen microbiota and serum metabolome are dynamically changing after feeding BF, as well as how their changes influence the feed intake, digestibility, nutrient transport, meat quality and growth performances of sheep. Twelve growing Hu sheep were allocated into 3 groups: alfalfa hay fed group (AH: positive control), rice straw fed group (RS: negative control) and BF fed group (BF: treatment). Samples of rumen content, blood, rumen epithelium, muscle, feed offered and refusals were collected for the subsequent analysis. RESULTS: Feeding BF changed the microbial community and rumen fermentation, particularly increasing (P < 0.05) relative abundance of Prevotella and propionate production, and decreasing (P < 0.05) enteric methane yield. The histomorphology (height, width, area and thickness) of rumen papillae and gene expression for carbohydrate transport (MCT1), tight junction (claudin-1, claudin-4), and cell proliferation (CDK4, Cyclin A2, Cyclin E1) were improved (P < 0.05) in sheep fed BF. Additionally, serum metabolome was also dynamically changed, which led to up-regulating (P < 0.05) the primary bile acid biosynthesis and biosynthesis of unsaturated fatty acid in sheep fed BF. As a result, the higher (P < 0.05) feed intake, digestibility, growth rate, feed efficiency, meat quality and mono-unsaturated fatty acid concentration in muscle, and the lower (P < 0.05) feed cost per kg of live weight were achieved by feeding BF. CONCLUSIONS: Feeding BF improved the growth performances and meat quality of sheep and reduced their feed cost. Therefore, bio-fermentation of rice straw could be an innovative way for improving ruminant production with minimizing production costs.

4.
BMC Microbiol ; 23(1): 70, 2023 03 15.
Article En | MEDLINE | ID: mdl-36922757

BACKGROUND: The nutrient availability of roughages could affect the dietary utilization efficiency of ruminants even in isocaloric and isonitrogenous diets. Here, we analyzed the bacterial composition and their metabolic pathways in the gastrointestinal tracts (GITs) of Hu sheep fed with wheat straw (WS) instead of alfalfa (AL) in isocaloric and isonitrogenous diets, trying to explore the reasons from the perspective of GITs bacterial network structure changes. RESULTS: We employed 16S rRNA gene sequencing in combination with the Kruskal-Wallis test, Spearman correlation analysis, and other statistical methods to describe the microbiota composition in the GITs of Hu sheep. The results showed after the roughage was replaced from AL to WS, the most positive response occurred in the rumen microbiota, resulting in a more obvious microbiological and functional redundancy phenomenon. Whereas extended biogeographic studies of the GITs bacterial community found opposite results for the hindgut microbiota and metabolism networks compared to the forestomach. The abundance of fiber-degrading bacteria such as Prevotella, Oscillospiraceae NK4A214 group, and Treponema was significantly increased in GITs, but low-efficiency crude fiber degradation inhibited energy use efficiency, the pentose phosphate pathway, gluconeogenesis, and volatile acid synthesis. In addition, dietary shifting from AL to WS decreased the abundance of beneficial bacteria such as the Lachnospiraceae NK3A20 group and Alistipes, thereby enhancing the underlying inflammatory response. CONCLUSIONS: These findings suggest that feeding untreated WS affected the structure and function of the bacterial network in the GITs due to limited total digestible nutrients, and in particular increases the complexity of the rumen bacterial network, and limit the abundance of bacteria involved in the crude fiber degradation in the hindgut.


Animal Feed , Dietary Fiber , Sheep , Animals , Dietary Fiber/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Digestion , Diet/veterinary , Ruminants , Gastrointestinal Tract/metabolism , Nutrients , Rumen/microbiology , Triticum , Bacteria/genetics , Bacteria/metabolism , Fermentation
5.
Front Microbiol ; 13: 1016852, 2022.
Article En | MEDLINE | ID: mdl-36466677

The soil microbiome is crucial in determining contemporary realistic conditions for future terrestrial ecological and evolutionary development. However, the precise mechanism between the fecal deposition in livestock grazing and changes in the soil microbiome remains unknown. This is the first in-depth study of bacterial and fungal taxonomic changes of excrement contaminated soils in the plateau (>3,500 m). This suggests the functional shifts towards a harmful-dominated soil microbiome. According to our findings, excrement contamination significantly reduced the soil bacterial and fungal diversity and richness. Furthermore, a continuous decrease in the relative abundance of microorganisms was associated with nutrient cycling, soil pollution purification, and root-soil stability with the increasing degree of excrement contamination. In comparison, soil pathogens were found to have the opposite trend in the scenario, further deteriorating normal soil function and system resilience. Such colonization and succession of the microbiome might provide an important potential theoretical instruction for microbiome-based soil health protection measures in the plateau of China.

6.
Metabolites ; 12(8)2022 Aug 11.
Article En | MEDLINE | ID: mdl-36005610

This study aimed to investigate the changes in the blood metabolic profiles of grazing yaks during the cold season to reveal their physiological status and seek the nutrients needed to be supplemented. Six castrated yaks (3 years old) with 166.8 kg (standard deviation = 5.3) of liveweight grazed in the Qinghai-Tibetan Plateau were used as experimental animals without supplementary feeding. Blood samples of each animal were collected in October and December 2015, and March 2016 for the analysis of serum biochemicals and metabolome. Results showed serum indices involved in protein metabolism in grazing yaks showed greater differences during the cold season than the metabolisms of energy or minerals. Cold stress in December had minor effects on the serum metabolic profiles of yaks compared with those in October. Yaks in October and December shared seven differential serum metabolites and enrichments of the "arachidonic acid metabolism" and "glycine, serine, and threonine metabolism" pathways compared with those in March caused by the shortage of feeds. Summarily, the nutrient deficiency would be influential on the physiological status of grazing yaks during the cold season, especially on the protein metabolism, which could be improved by supplementary feeds.

7.
Appl Environ Microbiol ; 88(15): e0099222, 2022 08 09.
Article En | MEDLINE | ID: mdl-35856688

Phytosterols are natural steroids in plants, possessing bioactivities that could modify gut microbes. This experiment aimed to evaluate the effects of feeding phytosterols on the community structures and metabolic functions of the rumen microbiota in perinatal cows. Perinatal cows were supplied with 0 mg (control) or 200 mg (treatment) phytosterols per day. Multiomic analyses were used to analyze the community structures and metabolic functions of rumen microbiota. Results showed that dietary phytosterols increased the copy number of total ruminal bacteria, the concentration of microbial crude protein, and the molar percentage of propionate in the rumen of perinatal cows but had no effects on the alpha diversity of ruminal bacteria. However, they enriched three genera (i.e., Fibrobacter) and seven species (i.e., Fibrobacter succinogenes) within active ruminal bacteria. Metatranscriptomic and metabolomic analyses revealed that dietary phytosterols enhanced the pathway of glycolysis and the family of glycoside hydrolase 13 but depressed the citrate cycle and pyruvate metabolism and several pathways of amino acid biosynthesis. In conclusion, dietary addition of phytosterols improved the growth of ruminal bacteria and changed rumen fermentation by modifying the rumen microbiome and the energy metabolism pathways, which would be beneficial for the energy utilization of perinatal cows. IMPORTANCE Perinatal cows suffer serious physiological stress and energy deficiency. Phytosterols have bioactive functions for gut microbes. However, little knowledge is available on their effects on rumen microbiota and rumen fermentation. Results of the present experiment revealed that dietary supplementation of phytosterols could improve the growth of ruminal bacteria and changed the rumen fermentation to provide more glycogenetic precursors for the perinatal cows by modifying the ruminal bacteria community and altering the energy metabolism pathways of the rumen microbiota. These findings suggest that dietary supplementation of phytosterols would be beneficial for perinatal cows suffering from a negative energy balance.


Gastrointestinal Microbiome , Microbiota , Phytosterols , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Supplements/analysis , Female , Fermentation , Lactation , Phytosterols/metabolism , Phytosterols/pharmacology , Rumen/microbiology
8.
Front Vet Sci ; 9: 799862, 2022.
Article En | MEDLINE | ID: mdl-35280137

The occurrence of diarrhea in Tibetan piglets is highly notable, but the microorganisms responsible are yet unclear. Its high incidence results in serious economic losses for the Tibetan pig industry. Moreover, the dynamic balance of intestinal microflora plays a crucial role in maintaining host health, as it is a prime cause of diarrhea. Therefore, the present study was performed to analyze the characteristics of bacterial microbiota structure in healthy, diarrheal and treated weaned piglets in Tibet autonomous region for providing a theoretical basis to prevent and control diarrhea. The study was based on the V3-V4 region of the 16S rRNA gene and gut microbiota functions following the metagenome analysis of fresh fecal samples (n = 5) from different groups. The Shannon and Simpson indices differed substantially between diarrheal and treated groups (p < 0.05). According to our findings, the beta diversities, especially between healthy and diarrheal groups, were found different. Firmicutes, Bacteroidetes and Proteobacteria were the dominant phyla in three groups. Furthermore, the abundance of Fusobacteria in the diarrheal group was higher than the other groups. The dominant genera in the diarrheal group were Fusobacterium, Butyricimonas, Sutterella, Peptostreptococcus, and Pasteurella. Moreover, Lactobacillus, Megasphaera and Clavibacter were distinctly less abundant in this group. It is noteworthy that the specific decrease in the abundance of pathogenic bacteria after antibiotic treatment in piglets was noticed, while the level of Lactobacillus was evidently increased. In conclusion, fecal microbial composition and structure variations were discovered across the three groups. Also, the ecological balance of the intestinal microflora was disrupted in diarrheal piglets. It might be caused by a reduction in the relative number of beneficial bacteria and an increase in the abundance of pathogenic bacteria. In the context of advocating for non-resistant feeding, we suspect that the addition of probiotics to feed may prevent early-weaning diarrhea in piglets. Moreover, our findings might help for preventing diarrhea in weaned Tibetan piglets with a better understanding of microbial population dynamics.

9.
Mycoscience ; 63(4): 156-164, 2022.
Article En | MEDLINE | ID: mdl-37090471

Due to the high crude fiber content, straw of various crops is difficult to become a high quality forage resource. The degradation of cellulose in nature mainly depends on the cellulase secreted by microbes, which degrade cellulose into small molecular substances through chemical action, and the microbes that secrete cellulase mainly include some bacteria, fungi and actinomycetes, etc. The large and diverse microbial population contained in the mammalian gastrointestinal tract plays an important role in nutrient digestion. At present, many cellulose-degrading strains have been screened and obtained from animal digestive system and feces, such as Bacillus subtilis from the feces of Panda, Bacillus amyloliquefaciens from the cecum of goose. In this study, the fungal diversity was analysed in the fresh faeces of Tibetan sheep, Tibetan gazelle and Tibetan antelope in Qiangtang, Tibet. Results showed that the structure and species of gut fungi are different in three animals, which may be related to the different physiological functions among different animals, e.g., Tibetan antelope and Tibetan gazelle have stronger tolerance to rough feeding than Tibetan sheep. This study will lay a foundation for cellulose-degrading fungal development and provides technical support for improving rough feeding tolerance of Tibetan sheep.

10.
Front Cell Infect Microbiol ; 12: 1054205, 2022.
Article En | MEDLINE | ID: mdl-36699727

Terminalia bellirica (Gaertn.) Roxb. (TB) is a traditional herbal combination used in Chinese medicine for the treatment of a broad range of diseases. In this study, thirty KM mice were randomly divided into control (N), infection group (NS), and the TB protection group (HS). Based on its digestive feature, intestinal physical barrier, immunological barrier and gut microbiota effects in vivo on challenged with S.typhimurium mice were investigated after oral administration of 600 mg/kg b.wt of TB for 13 days. The results show that the extract could improve the level of serum immunoglobulins (IgA and IgG), decrease the intestinal cytokine secretion to relieve intestinal cytokine storm, reinforce the intestinal biochemical barrier function by elevating the sIgA expression, and strengthen the intestinal physical barrier function. Simultaneously, based on the V3-V4 region of the 16S rRNA analyzed, the results of the taxonomic structure of the intestinal microbiota demonstrated that the TB prevention effect transformed the key phylotypes of the gut microbiota in S. Typhimurium-challenged mice and promoted the multiplication of beneficial bacteria. Furthermore, the abundance of Firmicutes and Deferribacteres increased, while that of Bacteroidetes and Actinobacteria decreased. At the genus level, the abundance of Ruminococcus and Oscillospira was substantially enhanced, while the other dominant genera showed no significant change between the vehicle control groups and the TB prevention groups. In summary, these results provide evidence that the administration of TB extract can prevent S. Typhimurium infection by alleviating the intestinal physical and immunological barriers and normalizing the gut microbiota, highlighting a promising application in clinical treatment. Thus, our results provide new insights into the biological functions of TB for the preventive effect of intestinal inflammation.


Salmonella typhimurium , Terminalia , Animals , Mice , Bacteria/genetics , Intestines , Plant Extracts/pharmacology , Plant Extracts/chemistry , RNA, Ribosomal, 16S , Salmonella typhimurium/genetics , Terminalia/chemistry , Terminalia/genetics
11.
Animals (Basel) ; 10(8)2020 Jul 29.
Article En | MEDLINE | ID: mdl-32751240

Several geographically isolated populations of Tibetan pigs inhabit the high-altitude environment of the Tibetan Plateau. Their genetic relationships, contribution to the pool of genetic diversity, and their origin of domestication are unclear. In this study, whole-genome re-sequencing data from 10 geographically isolated Tibetan pig populations were collected and analyzed. Population genetic analyses revealed limited genetic differentiation among the Tibetan pig populations. Evidence from deleterious variant analysis indicated that population-specific deleterious variants were the major component of all mutational loci. Contribution to the meta-population was largest in the TT (Qinghai-Tibet Plateau) population, based on gene diversity or allelic diversity. Selective sweep analysis revealed numerous genes, including RXFP1, FZD1, OR1F1, TBX19, MSTN, ESR1, MC1R, HIF3A, and EGLN2 which are involved in lung development, hard palate development, coat color, hormone metabolism, facial appearance, and perception of smell. These findings increase our understanding of the origins and domestication of the Tibetan pig, and help optimize the strategy for their conservation.

12.
Molecules ; 25(1)2019 Dec 27.
Article En | MEDLINE | ID: mdl-31892148

The objective of the present study was to produce antioxidant hydrolysate from Tibetan egg white protein hydrolyzed with papain, and to investigate the effect of added papain egg white hydrolysate (PEWH) on the quality characteristics and amino acid profiles of yak milk yogurt. A response surface methodology (RSM) was utilized to analyze the effects of hydrolysis time (X1), the ratio of enzymes to substrates, and enzyme dosage (X3) on the superoxide anion radical (O2-) scavenging activity of hydrolysates. The predicted maximum value of O2- scavenging activity (89.06%) was obtained an X1 of 2.51 h, X2 of 4.13%, and X3 of 4500 U/g of substrate, almost approaching the experimental value (88.05 ± 1.2%). Furthermore, it was found that the addition of PEWH to yak milk can enhance acidification, sensory score, the number of lactic acid bacteria (LAB), and the amino acid content in yak milk yogurt. The results suggested that PEWH displayed an exceptional potential to be developed as a functional food ingredient that could be applied during the manufacturing process of yak milk yogurt.


Egg Proteins/chemistry , Egg White/chemistry , Free Radical Scavengers/chemistry , Milk/chemistry , Papain/chemistry , Protein Hydrolysates/chemistry , Yogurt , Animals , Cattle , Superoxides/chemistry
...