Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 138
1.
Free Radic Biol Med ; 214: 28-41, 2024 Mar.
Article En | MEDLINE | ID: mdl-38325565

Reactive species are involved in various aspects of neoplastic diseases, including carcinogenesis, cancer-specific metabolism and therapeutics. Non-thermal plasma (NTP) can directly provide reactive species, by integrating atmospheric and interjacent molecules as substrates, to represent a handy strategy to load oxidative stress in situ. NTP causes apoptosis and/or ferroptosis specifically in cancer cells of various types. Plasma-activated Ringer's lactate (PAL) is another modality at the preclinical stage as cancer therapeutics, based on more stable reactive species. PAL specifically kills malignant mesothelioma (MM) cells, employing lysosomal ·NO as a switch from autophagy to ferroptosis. However, the entire molecular mechanisms have not been elucidated yet. Here we studied cytosolic iron regulations in MM and other cancer cells in response to PAL exposure. We discovered that cells with higher catalytic Fe(II) are more susceptible to PAL-induced ferroptosis. PAL caused a cytosolic catalytic Fe(II)-associated pathology through iron chaperones, poly (rC)-binding proteins (PCBP)1/2, inducing a disturbance in glutathione-regulated iron homeostasis. PCBP1/NCOA4-mediated ferritinophagy started at a later phase, further increasing cytosolic catalytic Fe(II), ending in ferroptosis. In contrast, PCBP2 after PAL exposure contributed to iron loading to mitochondria, leading to mitochondrial dysfunction. Therapeutic effect of PAL was successfully applied to an orthotopic MM xenograft model in mice. In conclusion, PAL can selectively sensitize MM cells to ferroptosis by remodeling cytoplasmic iron homeostasis, where glutathione and PCBPs play distinct roles, resulting in lethal ferritinophagy and mitochondrial dysfunction. Our findings indicate the clinical application of PAL as a ferroptosis-inducer and the potential of PCBPs as novel targets in cancer therapeutics.


Ferroptosis , Mesothelioma, Malignant , Mesothelioma , Mitochondrial Diseases , Humans , Animals , Mice , Carrier Proteins , Ringer's Lactate , Glutathione , Iron , Ferrous Compounds , RNA-Binding Proteins/genetics
2.
J Biomed Mater Res B Appl Biomater ; 112(1): e35369, 2024 01.
Article En | MEDLINE | ID: mdl-38247253

Peripheral nerve injuries (PNIs) include complete and partial transection, crushing, and chronic compression injuries. Hollow absorbable conduits are used to treat complete transection with short defects, while wrapping the injured part with an absorbent material promotes nerve recovery by inhibiting inflammatory cell infiltration and scar tissue formation in crush injuries. For treatment of partially transected nerve injuries (PTNIs), such as injection-related iatrogenic PNI, whether wrapping the entire nerve, including the injury site, or bridging the transected fascicle with an artificial nerve conduit (ANC) is beneficial remains to be verified. The purpose of this study was to investigate whether wrapping the injured nerve and placing collagen fibers as scaffolds at the nerve defect site contribute to neural recovery in PTNI. A unilateral 5-mm partial nerve defect was created at the mid-thigh level in a rat sciatic nerve injury model. Fifty-four Sprague-Dawley (SD) rats (150-250 g) were divided into three groups (n = 9 each): group 1, collagen fibers were placed in the nerve defect and the sciatic nerve was wrapped with collagen conduit; group 2, the sciatic nerve was wrapped by collagen conduit without collagen fibers; and group 3, nerve defect was reconstructed with collagen-filled conduit. Nerve regeneration was evaluated by analyses of gait, electrophysiology, wet muscle weight, and axon numbers with immunohistochemistry at 12 and 24 weeks. Dorsiflexion angles among all groups improved significantly from 12 to 24 weeks postoperatively. At 24 weeks postoperatively, compound muscle action potential amplitudes (CMAPs) of tibialis anterior were 5.26 ± 4.64, 1.31 ± 1.17, and 0.14 ± 0.24 mV (p < .05), CMAPs of gastrocnemius were 21.3 ± 5.98, 15.4 ± 5.46, and 13.11 ± 3.91 mV in groups 1, 2, and 3, respectively; and the value of group 1 was significantly higher than that of group 3 (p < .05). Axon numbers were 2194 ± 629; 1106 ± 645; and 805 ± 907 in groups 1, 2, and 3, respectively (p < .05). For PTNI reconstruction, artificial nerve wrap (ANW) was superior to ANC. Providing collagen scaffold at the nerve defect site enhanced nerve recovery during reconstruction with ANW.


Peripheral Nerve Injuries , Rats , Animals , Peripheral Nerve Injuries/therapy , Rats, Sprague-Dawley , Sciatic Nerve/surgery , Nerve Regeneration , Collagen
3.
Arch Biochem Biophys ; 751: 109846, 2024 01.
Article En | MEDLINE | ID: mdl-38056686

Plasma-activated medium (PAM) has various biological activities including anticancer and antimicrobial. However, the effect on chemoresistance in cancer cells has not been clarified in detail. Solid cancer cells form a microenvironment in the body and acquire resistance against anticancer drugs. So far, we reported that claudin-2 (CLDN2), a component of tight junctions, suppresses the anticancer drug-induced cytotoxicity of spheroids that mimic in vivo tumors. Here, we found that the protein level of CLDN2 is downregulated by the sublethal concentration of PAM in human lung adenocarcinoma-derived A549 and PC-3 cells. A cycloheximide pulse-chase assay showed that PAM accelerates the degradation of CLDN2 protein. The PAM-induced reduction of CLDN2 protein was inhibited by a lysosome inhibitor, indicating PAM may enhance the lysosomal degradation of CLDN2. The paracellular permeability to doxorubicin (DXR), an anthracycline antitumor drug, was enhanced by PAM. In the spheroids, the accumulation and toxicity of DXR were enhanced by PAM. In addition, oxidative stress and the expression of nuclear factor erythroid 2-related factor 2, one of the key factors for the acquisition of chemoresistance, were attenuated by PAM. The improvement effect of PAM on chemoresistance was suppressed by the exogenous CLDN2 overexpression. These results indicate that PAM has the ability to downregulate CLDN2 expression and may become an adjuvant drug against lung adenocarcinoma.


Adenocarcinoma of Lung , Antineoplastic Agents , Lung Neoplasms , Humans , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Claudin-2/metabolism , Down-Regulation , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm , Lung Neoplasms/pathology , Tumor Microenvironment
4.
Oral Dis ; 2023 Dec 04.
Article En | MEDLINE | ID: mdl-38047766

OBJECTIVE: This study aimed to investigate the effect of plasma-activated Ringer's lactate solution (PAL) on oral squamous cell carcinoma (OSCC) cells and carcinogenic processes with a particular focus on iron and collagenous matrix formation. MATERIALS AND METHODS: We used three OSCC cell lines, one keratinocyte cell line, and two fibroblast lines, and cell viability assays, immunoblotting, flow cytometry, and transmission electron microscopy were performed to evaluate the effect and type of cell death. The effect of PAL treatment on lysyl oxidase (LOX) expression was investigated in vitro and in vivo. Tamoxifen-inducible Mob1a/b double-knockout mice were used for the in vivo experiment. RESULTS: PAL killed OSCC cells more effectively than the control nontumorous cells and suppressed cell migration and invasion. Ferroptosis occurred and the protein level of LOX was downregulated in cancer cells in vitro and in vivo. Additionally, PAL improved the survival rate of mice and suppressed collagenous matrix formation. CONCLUSIONS: We demonstrated that PAL specifically kills OSCC cells and that ferroptosis occurs in vitro and in vivo. Furthermore, PAL can prevent carcinogenesis and improve the survival rate of oral cancer, especially tongue cancer, by changing collagenous matrix formation via LOX suppression.

5.
Dalton Trans ; 52(39): 14012-14016, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37740311

Dimolybdenum complexes bearing 3,3'''-(1,1':3',1'':3'',1'''-quaterphenylene)-bridged pyridine-based PNP-type pincer ligand are designed and prepared according to DFT calculations on the cleavage step of dinitrogen-bridged dimolybdenum complexes bearing polyphenylene-bridged pyridine-based PNP-type pincer ligands. The dimolybdenum complexes are found to work as effective catalysts toward ammonia formation from dinitrogen with samarium diiodide as a reductant and water as a proton source under ambient reaction conditions.

6.
Free Radic Res ; 57(3): 239-270, 2023 Dec.
Article En | MEDLINE | ID: mdl-37395063

This review provides a description of the historical background of the development of biological applications of low-temperature plasmas. The generation of plasma, methods and devices, plasma sources, and measurements of plasma properties, such as electron dynamics and chemical species generation in both gaseous and aqueous phases, were assessed. Currently, direct irradiation methods for plasma discharges contacting biological surfaces, such as the skin and teeth, are related to plasma biological interactions. Indirect methods using plasma-treated liquids are based on plasma-liquid interactions. The use of these two methods is rapidly increasing in preclinical studies and cancer therapy. The authors address the prospects for further developments in cancer therapeutic applications by understanding the interactions between the plasma and living organisms.


Neoplasms , Plasma Gases , Humans , Plasma Gases/therapeutic use , Reactive Oxygen Species/chemistry , Temperature , Gases , Neoplasms/therapy
7.
Angew Chem Int Ed Engl ; 62(43): e202306631, 2023 Oct 23.
Article En | MEDLINE | ID: mdl-37382559

We newly designed and prepared a novel molybdenum complex bearing a 4-[3,5-bis(trifluoromethyl)phenyl]pyridine-based PNP-type pincer ligand, based on the bond dissociation free energies (BDFEs) of the N-H bonds in molybdenum-imide complexes bearing various substituted pyridine-based PNP-type pincer ligands. The complex worked as an excellent catalyst toward ammonia formation from the reaction of an atmospheric pressure of dinitrogen with samarium diiodide as a reductant and water as a proton source under ambient reaction conditions, where up to 3580 equivalents of ammonia were formed based on the molybdenum atom of the catalyst. The catalytic activity was significantly improved by one order of magnitude larger than that observed when using the complex before modification.

8.
Free Radic Res ; 57(3): 161-173, 2023 Dec.
Article En | MEDLINE | ID: mdl-37226877

We investigated the effect of cold plasma application on the yield and grain quality of rice (Oryza sativa L.), focusing on the brewer's rice cultivar, Yamadanishiki. Two treatment methods were examined in a paddy; direct plasma irradiation of seedlings and indirect treatment with plasma-activated Ringer's lactate solution (PAL) during the vegetative growth phase. Periodic direct irradiation for 30 s increased whole plant weight and grain yield. Treatment with PAL promoted some growth of panicles relatively and partially suppressed the growth of culms and leaves. Both treatments affected the grain quality; an increase of the ratio of white-core grains to total number of grains, which is suited for producing Japanese sake rice, as well as a decrease of the ratio of immature grains. The results showed that the effective production of rice grains for sake production can be improved by the application of cold plasma treatment of rice seedlings in a paddy.HighlightRice plants of brewer's rice cultivar in a paddy were treated with cold plasma, by the direct irradiation of plants and the immersed of plants in plasma-activated Ringer's lactate (PAL).Direct plasma irradiation promoted plant weight, grain ripening, and increased yield.PAL treatment affected the growth of main stem and promoted the growth of panicles relatively.Both treatments improved the producing white-core grains, in addition to promotion of grain ripening.Cold plasma treatment can be applied to produce stable and high-quality food in various agriculture and food industries, which can achieve the sustainable developmental goals (SDGs).


Oryza , Plasma Gases , Plasma Gases/pharmacology , Alcoholic Beverages , Ringer's Lactate/pharmacology , Fermentation , Edible Grain
9.
ACS Meas Sci Au ; 3(2): 113-119, 2023 Apr 19.
Article En | MEDLINE | ID: mdl-37090261

Considering the challenges in isolating circulating tumor cells (CTCs) pertaining to cellular stress and purity, we report the application of a blood microfiltration device as an optimal approach for noninvasive liquid biopsy to target CTCs. We experimentally analyzed the filtration behavior of the microfilter using pressure sensing to separate tumor cells from leukocytes in whole blood. This approach achieved an average recovery of >96% of the spiked tumor cells and depletion of >99% of total leukocytes. Furthermore, we carried out genomic profiling of the CTCs using the blood microfiltration device. The method was also applied in a clinical setting; DNA amplification was performed using a small number of microfiltered CTCs and epidermal growth factor receptor mutations were successfully detected to characterize the efficacy of molecularly targeted drugs against lung cancer. Overall, the proposed method can provide a tool for evaluating efficient filtration pressure to concentrate CTCs from whole blood.

10.
Free Radic Res ; 57(2): 91-104, 2023 Feb.
Article En | MEDLINE | ID: mdl-37067923

Cold atmospheric pressure plasmas are promising medical tools that can assist in cancer treatment. While the medical pathology mechanism is substantially understood, knowledge of the contribution of reactive species formed in plasma and the mode of activation of biochemical pathways is insufficient. Herein, we present a concept involving antitumoral plasma-activated organics, which is envisaged to increase cytotoxicity levels against cancer cells. Ringer's acetate solution was irradiated by low-temperature plasma at atmospheric pressure and possible reaction pathways of the compound generation are presented. The chemical compounds formed by plasma treatment and their effects on non-tumorigenic breast epithelial cells (MCF-10A) and breast cancer cells (MCF-7) were investigated. The cell viability results have shown that plasma-derived compounds have both, stimulatory and inhibitory effects on cell viability, depending on the concentration of the generated compounds in the irradiated liquids. Previous studies have shown that oxidative stresses involving reactive oxygen and nitrogen species (RONS) can be used to kill cancer cells. Hence, while RONS offers promising first-step killing effects, cell viability results have shown that plasma-derived compounds, such as acetic anhydride and ethyl acetate, have the potential to play important roles in plasma-based cancer therapy.


Neoplasms , Plasma Gases , Humans , Ringer's Solution , Plasma Gases/pharmacology , Reactive Oxygen Species/metabolism , Atmospheric Pressure
11.
Free Radic Res ; 57(1): 38-46, 2023 Jan.
Article En | MEDLINE | ID: mdl-36919449

Plasma is the fourth physical state of matter, characterized by an ionized gaseous mixture, after solid, liquid, and gas phases, and contains a wide array of components such as ions, electrons, radicals, and ultraviolet ray. Whereas the sun and thunder are typical natural plasma, recent progress in the electronics enabled the generation of body-temperature plasma, designated as low-temperature plasma (LTP) or non-thermal plasma since the 1990s. LTP has attracted the attention of researchers for possible biological and medical applications. All the living species on earth utilize water as essential media for solvents and molecular transport. Thus, biological application of LTP naturally intervenes water whether LTP is exposed directly or indirectly, where plasma-activated lactate (PAL) is a standard, containing H2O2, NO2- and other identified molecules. Electron spin resonance and immunohistochemical studies demonstrated that LTP exposure is a handy method to load local oxidative stress. Cancer cells are characterized by persistent self-replication and high cytosolic catalytic Fe(II). Therefore, both direct exposure of LTP and PAL can provide higher damage to cancer cells in comparison to non-tumorous cells, which has been demonstrated in a variety of cancer types. The cell death mode is either apoptosis or ferroptosis, depending on the cancer-type. Thus, LTP and PAL are expected to work as an additional cancer therapy to the established guideline protocols, especially for use in somatic cavities or surgical margins.


Hydrogen Peroxide , Neoplasms , Humans , Temperature , Electron Spin Resonance Spectroscopy , Apoptosis
12.
Free Radic Res ; 57(1): 30-37, 2023 Jan.
Article En | MEDLINE | ID: mdl-36919453

COVID-19 has been pandemic since 2020 with persistent generation of new variants. Cellular receptor for SARS-CoV-2 is angiotensin-converting enzyme 2 (ACE2), where transmembrane serine protease-2 (TMPRSS2) is essential for viral internalization. We recently reported abundant expression of ACE2 and TMPRSS2 in the oral cavity of humans and mice. Therefore, oral cavity may work for COVID-19 infection gates. Here we undertook to evaluate whether vaccination in the tongue harbors any merit in comparison to subcutaneous injection. Low-temperature plasma (LTP) is the fourth physical state of matters with ionization above gas but at body temperature. LTP provides complex chemistry, eventually supplying oxidative and/or nitrosative stress on the interface. LTP-associated cellular death has been reported to cause apoptosis and/or ferroptosis. However, there is few data available on immunogenicity retention after LTP exposure. We therefore studied the effect of LTP exposure after the injection of keyhole limpet hemocyanin (KLH) or spike 2 protein of SARS-CoV-2 to the tongue of six-week-old male BALB/c mice, compared to subcutaneous vaccination. Whereas LTP did not change the expression of ACE2 and TMPRSS2 in the tongue, repeated LTP exposure after tongue vaccination significantly promoted systemic and specific IgM production at day 11. In contrast, repeated LTP exposure after subcutaneous vaccination of KLH decreased systemic IgM production. Of note, tongue injection produced significantly higher titer of IgM and IgG in the case of KLH. In conclusion, LTP significantly reinforced humoral immunity by IgM after tongue injection. Vaccination to the tongue can be a novel strategy to acquire immediate immunity.


COVID-19 , SARS-CoV-2 , Humans , Male , Animals , Mice , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/metabolism , Temperature , Tongue/metabolism , Immunoglobulin M
13.
Sci Rep ; 13(1): 4130, 2023 03 13.
Article En | MEDLINE | ID: mdl-36914725

Various liquid biopsy methods have been developed for the non-invasive and early detection of diseases. In particular, the detection of circulating tumor cells (CTCs) and cancer-associated fibroblasts (CAFs) in blood has been receiving a great deal of attention. We have been developing systems and materials to facilitate such liquid biopsies. In this study, we further developed glass filters (with various patterns of holes, pitches, and non-adhesive coating) that can capture CTCs, but not white blood cells. We optimized the glass filters to capture CTCs, and demonstrated that they could be used to detect CTCs from lung cancer patients. We also used the optimized glass filters for detecting CAFs. Additionally, we further developed a system for visualizing the captured cells on the glass filters. Finally, we demonstrated that we could directly culture the captured cells on the glass filters. Based on these results, our high-performance glass filters appear to be useful for capturing and culturing CTCs and CAFs for further examinations.


Cancer-Associated Fibroblasts , Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology
14.
Inorg Chem ; 62(14): 5348-5356, 2023 Apr 10.
Article En | MEDLINE | ID: mdl-36728764

Chemoselective reductive conversion of organic and inorganic compounds has been developed by the combination of samarium(II) diiodide (SmI2) and water. Despite the extensive previous studies to elucidate the role of water in the reactivity of SmI2, the direct structural data of the reactive Sm2+-water complexes, SmI2(H2O)n, in an organic solvent-water mixture have not been reported experimentally so far. Herein, we performed the structure analysis of the Sm2+-water complex in tetrahydrofuran (THF) in the presence of water by in situ X-ray absorption spectroscopy using high-energy X-rays (Sm K-edge, 46.8 keV). The analysis revealed the dissociation of the Sm2+-I bonds in the presence of ≥ eight equivalents of water in the THF-water mixture. The origin of the peak shift in the UV/visible absorption spectra after the addition of water into SmI2/THF solution was proposed based on electron transitions simulated with time-dependent density-functional-theory calculations using optimized structures in THF or water. The obtained structural information provides the fundamental insights for elucidating the reactivity and chemoselectivity in the Sm2+-water complex system.

15.
Free Radic Res ; 57(1): 14-20, 2023 Jan.
Article En | MEDLINE | ID: mdl-36815453

Low-temperature plasma (LTP) has been widely used in life science. Plasma-activated solutions were defined as solutions irradiated with LTP, and water, medium, and Ringer's solutions have been irradiated with LTP to produce plasma-activated solutions. They contain chemical compounds produced by reactions among LTP, air, and solutions. Reactive oxygen and nitrogen species (RONS) are major components in plasma-activated solutions and recent studies revealed that plasma-activated organic compounds are produced in plasma-activated Ringer's lactate solution (PAL). Many in vitro and in vivo studies demonstrated that PAL exhibits anti-tumor effects on cancers, and biochemical analyses revealed intracellular molecular mechanisms of cancer cell death by PAL.


Neoplasms , Humans , Ringer's Lactate/chemistry , Reactive Oxygen Species
16.
Genes Environ ; 45(1): 3, 2023 Jan 13.
Article En | MEDLINE | ID: mdl-36639786

BACKGROUND: Non-thermal atmospheric pressure plasma technologies form the core of many scientific advances, including in the electronic, industrial, and biotechnological fields. The use of plasma as a cancer therapy has recently attracted significant attention due to its cancer cell killing activity. Plasma-activated Ringer's lactate solution (PAL) exhibits such activity. In addition to ROS, PAL contains active compounds or species that cause cancer cell death, but the potential mutagenic risks of PAL have not been studied. RESULTS: PAL has a low pH value and a high concentration of H2O2. H2O2 was removed from PAL using catalase and catalase-treated PAL with a pH of 5.9 retained a killing effect on HeLa cells whereas this effect was not observed if the PAL was adjusted to pH 7.2. Catalase-treated PAL at pH 5.9 had no significant effect on mutation frequency, the expression of γH2AX, or G2 arrest in HeLa cells. CONCLUSION: PAL contains one or more active compounds or species in addition to H2O2 that have a killing effect on HeLa cells. The compound(s) is active at lower pH conditions and apparently exhibits no genotoxicity. This study suggested that identification of the active compound(s) in PAL could lead to the development of novel anticancer drugs for future cancer therapy.

17.
Free Radic Res ; 56(9-10): 595-606, 2022.
Article En | MEDLINE | ID: mdl-36519277

Non-thermal plasma (NTP) induces the generation of reactive oxygen species (ROS) and reactive nitrogen species, such as hydroxyl radicals (•OH), hydrogen peroxide (H2O2), singlet oxygen, superoxide, ozone, and nitric oxide, at near-physiological temperatures. These molecules promote blood coagulation, wound healing, disinfection, and selective cancer cell death. Based on these evidences, clinical trials of NTP have been conducted for treating chronic wounds and head and neck cancers. Although clinical applications have progressed, the stoichiometric quantification of NTP-induced ROS remains unclear in the liquid phase in the presence of FeCl2 or FeCl3 in combination with biocompatible reducing agents, which may modulate the final biological effects of NTP. In this study, we employed electron paramagnetic resonance spectroscopy to quantify ROS using spin-trapping probe, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and H2O2, using luminescent probe in the presence of FeCl2 or FeCl3. NTP-induced DMPO-OH levels were elevated 10-100 µM FeCl2 or 500 and 1000 µM FeCl3. NTP-induced DMPO-OH with 10 µM FeCl2 or FeCl3 was significantly scavenged by ascorbate, α-tocopherol, dithiothreitol, reduced glutathione, or oxidized glutathione, whereas dehydroascorbate was ineffective in 2 mM DMPO. NTP-induced H2O2 was significantly degraded by 100 µM FeCl2 and FeCl3 in an iron-dependent manner. Meanwhile, decomposition of H2O2 by catalase decayed DMPO-OH efficiently in the presence of iron, indicating iron causes DMPO-OH production and degradation simultaneously. These results suggest that NTP-induced DMPO-OH is generated by the H2O2-consuming, iron-dependent Fenton reaction and ferryl intermediates. The potential iron-mediated ROS production by NTP is also discussed to clarify the interaction between NTP-induced ROS and biomolecules.


Hydrogen Peroxide , Plasma Gases , Reactive Oxygen Species , Spin Labels , Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemistry , Electron Spin Resonance Spectroscopy , Cyclic N-Oxides/chemistry , Iron/chemistry , Catalysis , Free Radicals
18.
Nat Commun ; 13(1): 7263, 2022 12 01.
Article En | MEDLINE | ID: mdl-36456553

The synthesis of ammonia from atmospheric dinitrogen, nitrogen fixation, is one of the essential reactions for human beings. Because the current industrial nitrogen fixation depends on dihydrogen produced from fossil fuels as raw material, the development of a nitrogen fixation reaction that relies on the energy provided by renewable energy, such as visible light, is an important research goal from the viewpoint of sustainable chemistry. Herein, we establish an iridium- and molybdenum-catalysed process for synthesizing ammonia from dinitrogen under ambient reaction conditions and visible light irradiation. In this reaction system, iridium complexes and molybdenum triiodide complexes bearing N-heterocyclic carbene-based pincer ligands act as cooperative catalysts to activate 9,10-dihydroacridine and dinitrogen, respectively. The reaction of dinitrogen with 9,10-dihydroacridine is not thermodynamically favoured, and it only takes place under visible light irradiation. Therefore, the described reaction system is one that affords visible light energy-driven ammonia formation from dinitrogen catalytically.


Iridium , Nitrogen Fixation , Humans , Molybdenum , Ammonia , Light
19.
Nat Commun ; 13(1): 6161, 2022 Oct 24.
Article En | MEDLINE | ID: mdl-36280675

Dinitrogen is an abundant and promising material for valuable organonitrogen compounds containing carbon-nitrogen bonds. Direct synthetic methods for preparing organonitrogen compounds from dinitrogen as a starting reagent under mild reaction conditions give insight into the sustainable production of valuable organonitrogen compounds with reduced fossil fuel consumption. Here we report the catalytic reaction for the formation of cyanate anion (NCO-) from dinitrogen under ambient reaction conditions. A molybdenum-carbamate complex bearing a pyridine-based 2,6-bis(di-tert-butylphosphinomethyl)pyridine (PNP)-pincer ligand is synthesized from the reaction of a molybdenum-nitride complex with phenyl chloroformate. The conversion between the molybdenum-carbamate complex and the molybdenum-nitride complex under ambient reaction conditions is achieved. The use of samarium diiodide (SmI2) as a reductant promotes the formation of NCO- from the molybdenum-carbamate complex as a key step. As a result, we demonstrate a synthetic cycle for NCO- from dinitrogen mediated by the molybdenum-PNP complexes in two steps. Based on this synthetic cycle, we achieve the catalytic synthesis of NCO- from dinitrogen under ambient reaction conditions.

20.
Inorg Chem ; 61(13): 5190-5195, 2022 Apr 04.
Article En | MEDLINE | ID: mdl-35313105

A series of cobalt(I)-dinitrogen complexes bearing anionic 4-substituted benzene-based PCP-type pincer ligands are synthesized and characterized. These complexes work as highly efficient catalysts for the formation of silylamine from dinitrogen under ambient reaction conditions to produce up to 371 equiv of silylamine based on the cobalt atom of the catalyst.

...