Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1331491, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274821

RESUMEN

Immune checkpoint blockade is the exciting breakthrough in cancer, but how immune checkpoints are activated is unknown. We have earlier reported that cell-free chromatin particles (cfChPs) that circulate in blood of cancer patients, or those that are released locally from dying cancer cells, are readily internalized by healthy cells with biological consequences. Here we report that treatment of human lymphocytes with cfChPs isolated from sera of cancer patients led to marked activation of the immune checkpoints PD-1, CTLA-4, LAG-3, NKG2A, and TIM-3. This finding was corroborated in vivo in splenocytes of mice when cfChPs were injected intravenously. Significant upregulation of immune checkpoint was also observed when isolated lymphocytes were exposed to conditioned medium containing cfChPs released from hypoxia-induced dying HeLa cells. Immune checkpoint activation could be down-regulated by pre-treating the conditioned media with three different cfChPs deactivating agents. Down-regulation of immune checkpoints by cfChPs deactivating agents may herald a novel form of immunotherapy of cancer.


Asunto(s)
Cromatina , Neoplasias , Humanos , Animales , Ratones , Células HeLa , Inmunoterapia , Linfocitos , Neoplasias/terapia
2.
Med Oncol ; 40(1): 17, 2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36372825

RESUMEN

It has been reported that chemotherapy toxicity is primarily not due to the drugs themselves, but is caused by cell-free chromatin particles (cfChPs) that are released from chemotherapy-induced dying cells. cfChPs from dying cells are readily internalized by healthy cells, wherein they inflict dsDNA breaks and activate inflammatory cytokines. cfChPs can be deactivated by oxygen radicals that are generated upon admixing the nutraceuticals resveratrol (R) and copper (Cu). Pre-clinical studies have shown that administration of R-Cu can reduce chemotherapy toxicity via the generation of oxygen radicals which deactivate cfChPs released from chemotherapy-induced dying cells. We investigated if R-Cu would reduce toxicity of docetaxel-based multi-agent chemotherapy in advanced gastric cancer. This single-arm phase II study was designed to assess the efficacy of orally administered R-Cu in ameliorating toxic side effects, as per National Cancer Institute Common Terminology Criteria for Adverse Events v4.03, in patients with advanced gastric cancer receiving docetaxel-based multi-agent chemotherapy. The primary objective was to reduce the proportion of patients experiencing grade ≥ 3 toxicity from 90 to 70%. Between October 2019 and April 2021, 30 patients, with a median age of 54 years, were enrolled of whom 73% were male. R-Cu treatment did not reduce the overall cumulative incidence of grade ≥ 3 toxicity (77%), or of ≥ 3 haematological toxicity (73%). However, the incidence of non-haematological toxicities comprising hand-foot syndrome (N = 4), diarrhoea (N = 3) and vomiting (N = 1) were markedly reduced (13%). Median progression-free survival (PFS) was 8 months (95% CI: 5.9-10.1), and overall survival (OS) was 16 months (95% confidence interval: 6.3-28.3). A marked reduction in non-haematological toxicities was seen in patients receiving R-Cu compared to historical data without adversely affecting PFS or OS. (292).Clinical trial information CTRI/2019/07/020289.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias Gástricas , Humanos , Masculino , Persona de Mediana Edad , Femenino , Neoplasias Gástricas/tratamiento farmacológico , Docetaxel/uso terapéutico , Especies Reactivas de Oxígeno , Resveratrol/uso terapéutico , Cobre/uso terapéutico , Adenocarcinoma/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Estudios Prospectivos , Antineoplásicos/uso terapéutico
3.
Front Oncol ; 12: 1000957, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185249

RESUMEN

Background: Our earlier studies have shown that cell-free chromatin particles (cfChPs) that are released from dying cancer cells are readily internalised by bystander cells leading to activation of two hallmarks of cancer viz. genome instability and inflammation. These hallmarks could be down-regulated by deactivating cfChPs via medium of oxygen radicals generated upon admixing small quantities of the nutraceuticals resveratrol (R) and copper (Cu). In this exploratory study, we investigated whether oral administration of R and Cu (R-Cu) would down-regulate the hallmarks of cancer and immune checkpoints in advanced squamous cell carcinoma of oral cavity (OSCC). Patients and methods: The study comprised of 25 patients divided into 5 equal groups. Five patients acted as controls; the remaining 20 were given R-Cu in four escalating doses. The lowest dose of R-Cu was 5.6mg and 560ng respectively, and the highest dose was 500mg and 5mg respectively. An initial biopsy was taken from patients at first presentation, and a second biopsy was taken 2 weeks later on the operating table. R-Cu was administered orally twice daily in the intervening period. Confocal microscopy was performed on tumour sections after fluorescent immuno-staining with anti-DNA and anti-histone antibodies to detect presence of cfChPs in the tumour micro-environment (TME). Immunofluorescence analysis was performed for 23 biomarkers representing the 10 Hallmarks of cancer, including 5 immune checkpoints, defined by Hanahan and Weinberg. Results: Confocal microscopy detected copious presence of cfChPs in TME of OSCC, which were eradicated/deactivated following two-week treatment with R-Cu. Eradication of cfChPs from TME was associated with marked down-regulation of 21/23 biomarkers, including the five immune checkpoints. The lower two doses of R-Cu were more effective than the higher doses. No adverse effects attributable to R-Cu were observed. Conclusion: These results suggest that cfChPs released into TME from dying cancer cells are global instigators for cancer hallmarks and immune checkpoints in surviving cancer cells. The ability of R-Cu to deactivate cfChPs raises the prospect of a novel and non-toxic form of cancer treatment which sans killing of cancer cells, and instead induces healing by down-regulating cancer hallmarks and immune check-points. Clinical Trial Registration: http://ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=19801&EncHid=&userName=CTRI/2018/03/012459.

4.
Sci Rep ; 12(1): 17209, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241685

RESUMEN

Billions of cells die in the body every day, and cell-free chromatin particles (cfChPs) which are released from them enter into the extracellular compartments of the body, including into the circulation. cfChPs are known to readily enter into healthy cells to damage their DNA and activate apoptotic and inflammatory pathways. We have hypothesized that lifelong assault on healthy cells by cfChPs is the underlying cause of ageing, and that ageing could be retarded by deactivating extra-cellular cfChPs. The latter can be effected by oxygen radicals that are generated upon admixing the nutraceuticals resveratrol and copper (R-Cu). The present study investigated whether prolonged administration of R-Cu would retard biological hallmarks of ageing. C57Bl/6 mice were divided into 3 equal groups; one group was sacrificed at age 3 months, and which acted as young controls. The remaining mice were allowed to age, and at age 10 months the experimental ageing group was given R-Cu by oral gavage twice daily for further 12 months at a dose of 1 mg/kg of R and 0.1 µg/kg of Cu. The control ageing group was given water by oral gavage twice daily for 12 months. Animals of both groups were sacrificed at age 22 months. R-Cu treatment led to reduction of several biological hallmarks of ageing in brain cells which included telomere attrition, amyloid deposition, DNA damage, apoptosis, inflammation, senescence, aneuploidy and mitochondrial dysfunction. R-Cu treatment also led to significant reduction in blood levels of glucose, cholesterol and C-reactive protein. These findings suggest that cfChPs may act as global instigators of ageing and neurodegeneration, and that therapeutic use of R-Cu may help to make healthy ageing an attainable goal.


Asunto(s)
Proteína C-Reactiva , Cobre , Animales , Proteína C-Reactiva/genética , Cromatina , Glucosa , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Resveratrol/farmacología , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA