Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Breed ; 44(8): 54, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39148502

RESUMEN

Utilization of crop wild relatives of wheat can be very effective in building the genetic diversity to cater to the evolving strains of disease pathogens. Aegilops speltoides is a rich source of rust resistance genes however transferring those to wheat genome can be tedious due to co-transfer and preferential transmission of undesirable genes causing gametocidal activity. Such an unholy association was observed in Triticum aestivum-Ae. speltoides derivative line Sel. 2427 which possess the broad-spectrum leaf rust seedling resistance gene (LrS2427). Molecular analysis based on 35 K wheat breeder's array revealed the maximum percentage of Ae. speltoides genome introgression on homoeologous group 2. In situ hybridization studies revealed the presence of S genome in Sel. 2427, showing six translocations on four chromosomes. Karyotyping using repetitive probe (AAG)6 revealed that the two chromosomes involved are 2D and 2B. Genic regions causing gametocidal activity were identified by dissecting it into component traits and QTLs on 2D and 2B chromosomes were revealed in case of the trait seed shrivelling index. To break the inadvertent association of LrS2427 with gametocidal genes, F1(Agra Local X Sel. 2427) seeds were irradiated with gamma rays and stable leaf rust resistant mutants lacking gametocidal activity were developed. These mutants showed resistance to different races of leaf rust pathogen and showed superior agronomic performance as well. These mutants could be a great resource in wheat improvement for utilization of the leaf rust resistance gene LrS2427 without any yield penalty. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01491-8.

2.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38344997

RESUMEN

Black pepper (Piper nigrum L.), a crop of the genus Piper, is an important spice that has both economic and ecological significance. It is widely regarded as the "King of Spices" because of its pungency, attributed to the presence of piperine. BAHD acyl transferase, the crucial enzyme involved in the final step in piperine biosynthesis was the focus of our study and the aim was to identify the candidate isoform involved in biosynthesis of piperine. Reference genome-based analysis of black pepper identified six BAHD-AT isoforms and mapping of these sequences revealed that the isoforms were situated on six distinct chromosomes. By using specific primers for each of these transcripts, qPCR analysis was done in different tissues as well as berry stages to obtain detectable amplification products. Expression profiles of isoforms from chromosome 6 correlated well with piperine content compared to other five isoforms, across tissues and was therefore assumed to be involved in biosynthesis of piperine. In addition to this, we could also identify the binding sites of MYB transcription factor in the cis-regulatory regions of the isoforms. We also used in-silico docking and molecular dynamics simulation to calculate the binding free energy of the ligand and confirmed that among all the isoforms, BAHD-AT from chromosome 6 had the lowest free binding energy and highest affinity towards the ligand. Our findings are expected to aid the identification of new genes connecting enzymes involved in the biosynthetic pathway of piperine, which will have major implications for future research in metabolic engineering.Communicated by Ramaswamy H. Sarma.

3.
Front Nutr ; 10: 1228172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37823087

RESUMEN

Millets are becoming more popular as a healthy substitute for people with lifestyle disorders. They offer dietary fiber, polyphenols, fatty acids, minerals, vitamins, protein, and antioxidants. The nutritional importance of millets leads to the present in-silico study of selective bioactive compounds docked against the targets of lifestyle diseases, viz., diabetes, hypertension, and atherosclerosis using molecular docking and molecular simulations approach. Pharmacokinetic analysis was also carried out to analyse ADME properties and toxicity analysis, drug-likeliness, and finally target prediction for new targets for uncharacterized compounds or secondary targets for recognized molecules by Swiss Target Prediction was also done. The docking results revealed that the bioactive compound flavan-4-ol, among all the 50 compounds studied, best docked to all the four targets of lifestyle diseases, viz., Human dipeptidyl peptidase IV (-5.94 kcal mol-1 binding energy), Sodium-glucose cotransporter-2 (-6.49 kcal mol-1) diabetes-related enzyme, the Human angiotensin-converting enzyme (-6.31 kcal mol-1) which plays a significant role in hypertension, and Proprotein convertase subtilisin kexin type 9 (-4.67 kcal mol-1) for atherosclerosis. Molecular dynamics simulation analysis substantiates that the flavan-4-ol forms a better stability complex with all the targets. ADMET profiles further strengthened the candidature of the flavan-4-ol bioactive compound to be considered for trial as an inhibitor of targets DPPIV, SGLT2, PCSK9, and hACE. We suggest that more research be conducted, taking Flavon-4-ol into account where it can be used as standard treatment for lifestyle diseases.

4.
Genes (Basel) ; 14(8)2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628674

RESUMEN

The horse, one of the most domesticated animals, has been used for several purposes, like transportation, hunting, in sport, or for agriculture-related works. Kathiawari, Marwari, Manipuri, Zanskari, Bhutia, Spiti, and Thoroughbred are the main breeds of horses, particularly due to their agroclimatic adaptation and role in any kind of strong physical activity, and these characteristics are majorly governed by genetic factors. The genetic diversity and phylogenetic relationship of these Indian equine breeds using microsatellite markers have been reported, but further studies exploring the SNP diversity and runs of homozygosity revealing the selection signature of breeds are still warranted. In our study, the identification of genes that play a vital role in muscle development is performed through SNP detection via the whole-genome sequencing approach. A total of 96 samples, categorized under seven breeds, and 620,721 SNPs were considered to ascertain the ROH patterns amongst all the seven breeds. Over 5444 ROH islands were mined, and the maximum number of ROHs was found to be present in Zanskari, while Thoroughbred was confined to the lowest number of ROHs. Gene enrichment of these ROH islands produced 6757 functional genes, with AGPAT1, CLEC4, and CFAP20 as important gene families. However, QTL annotation revealed that the maximum QTLs were associated with Wither's height trait ontology that falls under the growth trait in all seven breeds. An Equine SNP marker database (EqSNPDb) was developed to catalogue ROHs for all these equine breeds for the flexible and easy chromosome-wise retrieval of ROH along with the genotype details of all the SNPs. Such a study can reveal breed divergence in different climatic and ecological conditions.


Asunto(s)
Genómica , Polimorfismo de Nucleótido Simple , Animales , Caballos/genética , Polimorfismo de Nucleótido Simple/genética , Filogenia , Homocigoto , Genotipo
5.
Front Plant Sci ; 14: 1135285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351213

RESUMEN

Introduction: Mango (Mangifera indica L.), acclaimed as the 'king of fruits' in the tropical world, has historical, religious, and economic values. It is grown commercially in more than 100 countries, and fresh mango world trade accounts for ~3,200 million US dollars for the year 2020. Mango is widely cultivated in sub-tropical and tropical regions of the world, with India, China, and Thailand being the top three producers. Mango fruit is adored for its taste, color, flavor, and aroma. Fruit color and firmness are important fruit quality traits for consumer acceptance, but their genetics is poorly understood. Methods: For mapping of fruit color and firmness, mango varieties Amrapali and Sensation, having contrasting fruit quality traits, were crossed for the development of a mapping population. Ninety-two bi-parental progenies obtained from this cross were used for the construction of a high-density linkage map and identification of QTLs. Genotyping was carried out using an 80K SNP chip array. Results and discussion: Initially, we constructed two high-density linkage maps based on the segregation of female and male parents. A female map with 3,213 SNPs and male map with 1,781 SNPs were distributed on 20 linkages groups covering map lengths of 2,844.39 and 2,684.22cM, respectively. Finally, the integrated map was constructed comprised of 4,361 SNP markers distributed on 20 linkage groups, which consisted of the chromosome haploid number in Mangifera indica (n =20). The integrated genetic map covered the entire genome of Mangifera indica cv. Dashehari, with a total genetic distance of 2,982.75 cM and an average distance between markers of 0.68 cM. The length of LGs varied from 85.78 to 218.28 cM, with a mean size of 149.14 cM. Phenotyping for fruit color and firmness traits was done for two consecutive seasons. We identified important consistent QTLs for 12 out of 20 traits, with integrated genetic linkages having significant LOD scores in at least one season. Important consistent QTLs for fruit peel color are located at Chr 3 and 18, and firmness on Chr 11 and 20. The QTLs mapped in this study would be useful in the marker-assisted breeding of mango for improved efficiency.

6.
Methods Mol Biol ; 2638: 59-66, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781635

RESUMEN

The advent of advanced NGS technologies have led to the generation of enormous amount of sequence data which further aid in the discovery of the various type of markers such as SSRs, SNPs, InDels, etc. Among all these markers, microsatellite SSR markers can be mined from the ddRADseq data as certain properties of SSR markers make them ideal markers for study. These assist researchers and breeders in diversity analysis and producing new varieties with desired traits. To extract the markers, first, the ddRADseq data is assembled into consensus sequences using STACKS program which are further assembled for mining microsatellites using QDD along with MISA tool.


Asunto(s)
Genoma de Planta , Polimorfismo de Nucleótido Simple , Etiquetas de Secuencia Expresada , Repeticiones de Microsatélite/genética
7.
J Biomol Struct Dyn ; 40(22): 12316-12335, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34463220

RESUMEN

A positive association between oxidative stress and hyper-thyroid conditions is well established. Vitamin E (VIT-E) and curcumin (CRM) are considered as potent antioxidant small molecules. Nuclear factor erythroid 2-related factor 2(NRF-2) is known to bind with antioxidant response element and subsequently activate expression of antioxidant enzymes. However, the activation of NRF-2 depends on removal of its regulator Kelch-like ECH-associated protein 1(NRF-2). In the current study, an attempt is made to demonstrate whether effects of VIT-E and CRM are due to direct interaction with the target proteins (i.e. NRF-2, NRF-2, SOD, catalase and LDH) or by possible interaction with the flanking region of their promoters by in silico analysis. Further, these results were corroborated by pretreatment of H9C2 cells (1 x 106 cells per mL of media) with VIT-E (50 µM) and/or CRM (20 µM) for 24 h followed by induction of oxidative stress via T4 (100 nm) administration and assaying the active oxygen metabolism. Discriminant function analyses (DFA) indicated that T4 has a definite role in increasing oxidative stress as evidenced by induction of ROS generation, increase in mitochondrial membrane potential and elevated lipid peroxidation (LPx). Pretreatment with the two antioxidants have ameliorative effects more so when given in combination. The decline in biological activities of the principal antioxidant enzymes SOD and CAT with respect to T4 treatment and its restoration in antioxidant pretreated group further validated our in silico data. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Curcumina , Vitamina E , Vitamina E/farmacología , Antioxidantes/farmacología , Curcumina/farmacología , Curcumina/metabolismo , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Oxidación-Reducción , Superóxido Dismutasa/genética , Genes Reguladores , Línea Celular , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
8.
Front Plant Sci ; 12: 820761, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35222455

RESUMEN

Spike fertility and associated traits are key factors in deciding the grain yield potential of wheat. Genome-wide association study (GWAS) interwoven with advanced post-GWAS analysis such as a genotype-phenotype network (geno-pheno network) for spike fertility, grain yield, and associated traits allow to identify of novel genomic regions and represents attractive targets for future marker-assisted wheat improvement programs. In this study, GWAS was performed on 200 diverse wheat genotypes using Breeders' 35K Axiom array that led to the identification of 255 significant marker-trait associations (MTAs) (-log10P ≥ 3) for 15 metric traits phenotyped over three consecutive years. MTAs detected on chromosomes 3A, 3D, 5B, and 6A were most promising for spike fertility, grain yield, and associated traits. Furthermore, the geno-pheno network prioritised 11 significant MTAs that can be utilised as a minimal marker system for improving spike fertility and yield traits. In total, 119 MTAs were linked to 81 candidate genes encoding different types of functional proteins involved in various key pathways that affect the studied traits either way. Twenty-two novel loci were identified in present GWAS, twelve of which overlapped by candidate genes. These results were further validated by the gene expression analysis, Knetminer, and protein modelling. MTAs identified from this study hold promise for improving yield and related traits in wheat for continued genetic gain and in rapidly evolving artificial intelligence (AI) tools to apply in the breeding program.

9.
J Biotechnol ; 324: 103-111, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-33007348

RESUMEN

Jujube (Ziziphus jujubaMill.), a deciduous tree, is well known for its medicinal and nutritional values. Being an extremophile, it has an excellent capability to survive under arid conditions with limited water availability. In this regard, studying the role of water transport regulating proteins such as Aquaporins (AQPs) in jujube is of great importance. Aquaporins, channel-forming proteins are known to have a significant role in the transport of water and many other small solutes in plants. In the present study, computational approaches have identified 36 AQPs, which comprised of 12 NIPs (Nodulin 26-like intrinsic proteins), 10 PIPs (Plasma membrane intrinsic proteins), 10 TIPs (Tonoplast intrinsic proteins), 3 SIPs (Small intrinsic proteins), and 1 XIP (uncharacterized intrinsic protein). Conserved features of AQPs like asparagines-proline-alanine (NPA) amino acid motifs, aromatic/arginine (ar/R) selectivity filters, and Frogger's residues, having a significant role in solute specificity and transport, were also predicted. Homology-based tertiary (3D) structures of AQPS were also resolved using various tools, and subsequently, pore-lining residues have been identified using the 3D structures. The information of pore morphology, along with the conserved features provided through this work, will be helpful to predict solute specificity of AQPs. Analysis of transcriptomic data revealed the tissue-specific or ubiquitous expression of several AQPs in different tissues of jujube. Interestingly, TIP3-1 was found to have fruit specific expression whereas most of the AQPs have a relatively low expression. Based on the present study and previous reports, TIP3s seems to have a significant role in seed desiccation processes. The findings presented here provide pivotal insights into the functions of extremophile specific AQPs, to better understand the role of AQPs and, subsequently, the stress tolerance mechanism in jujube.


Asunto(s)
Acuaporinas , Plantas Medicinales , Ziziphus , Acuaporinas/genética , Frutas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vacuolas/metabolismo , Ziziphus/metabolismo
10.
Front Biosci (Landmark Ed) ; 25(2): 335-362, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31585892

RESUMEN

PolyGalacturonase Inhibiting Proteins (PGIPs) are leucine rich repeat pathogenesis-related (PR) cell wall proteins, which interact and inhibit the PolyGalacturonase (PG), an enzyme secreted by the pathogen to degrade pectin. Interaction of PGIP with PG limits the vulnerability of PG by the activation of host defense response against pathogenic attack. Erwinia is gram-negative soft rot bacteria responsible for rhizome rot disease in banana and many other crop plants. The interaction of PG with PGIP is one of the crucial steps for plant-pathogen interaction. To study the molecular mechanism of PR proteins, we employed molecular modelling, protein-protein docking and molecular dynamics simulations of banana PGIP (bPGIP) with Erwinia carotovora PG (ecPG). Further, insilico site-directed mutagenesis was performed in Phaseolus vulgaris PGIP (pvPGIP2) to elucidate the interaction with ecPG. Docking and simulation studies divulge that binding of bPGIP and PvPGIP2 with active site residues of EcPG induces structural changes and thereby inhibit the enzyme. This study provides a unique insight into PG-PGIP interaction, which may help in the development of bacterial soft-rot resistant banana cultivars.


Asunto(s)
Musa/metabolismo , Proteínas de Plantas/metabolismo , Poligalacturonasa/metabolismo , Secuencia de Aminoácidos , Erwinia/fisiología , Interacciones Huésped-Patógeno , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Musa/genética , Musa/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Poligalacturonasa/química , Poligalacturonasa/genética , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Electricidad Estática
11.
Indian J Biochem Biophys ; 52(1): 95-100, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26040116

RESUMEN

Salt stress is one of the major abiotic stresses limiting grain yield in wheat (Triticum aestivum L.). Wheat early salt-stress response gene (WESR3) is one of the major salt stress genes, which is affected in the first phase of salt stress. In this study, sequence and structural analysis of protein coded by WESR3 gene was carried out using various bioinformatics tools. Sequence analysis of WESR3 protein revealed the presence of highly conserved regions of Mlo gene family. Three-dimensional modeling was carried out to elucidate its structure and its active site. The sequence analysis revealed that WESR3 protein might be involved in fungal pathogen attack pathway. Thus, in addition to its involvement in abiotic stresses, it also seemed to play an important part in biotic stress pathways. Out of the three modeled protein structures obtained from I-TASSER, HHPred and QUARK, the I-TASSER protein model was the best model based on high confidence score and lesser number of bad contacts. The Ramchandran plot analysis also showed that all amino acid residues of I-TASSER model lie in the allowed region and thus indicating towards the overall good quality of the predicted model. Seventeen active sites were predicted in the protein bearing resemblance to the Mlo family conserved regions. In conclusion, a detailed analysis of WESR3 protein suggested an important role of WESR3 in biotic and abiotic stress. These results aid to the experimental data and help to build up a complete view of WESR3 proteins and their role in plant stress response.


Asunto(s)
Genes de Plantas , Proteínas de Plantas/química , Cloruro de Sodio , Estrés Fisiológico , Triticum/genética , Secuencia de Aminoácidos , Dominio Catalítico , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Conformación Proteica , Homología de Secuencia de Aminoácido
12.
J Biomol Struct Dyn ; 33(10): 2180-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25483988

RESUMEN

Biotic stress is a major cause of heavy loss in grape productivity. In order to develop biotic stress-resistant grape varieties, the key defense genes along with its pathway have to be deciphered. In angiosperm plants, lipase-like protein phytoalexin deficient 4 (PAD4) is well known to be essential for systemic resistance against biotic stress. PAD4 functions together with its interacting partner protein enhanced disease susceptibility 1 (EDS1) to promote salicylic acid (SA)-dependent and SA-independent defense pathway. Existence and structure of key protein of systemic resistance EDS1 and PAD4 are not known in grapes. Before SA pathway studies are taken in grape, molecular evidence of EDS1: PAD4 complex is to be established. To establish this, EDS1 protein sequence was retrieved from NCBI and homologous PAD4 protein was generated using Arabidopsis thaliana as template and conserved domains were confirmed. In this study, computational methods were used to model EDS1 and PAD4 and simulated the interactions of EDS1 and PAD4. Since no structural details of the proteins were available, homology modeling was employed to construct three-dimensional structures. Further, molecular dynamic simulations were performed to study the dynamic behavior of the EDS1 and PAD4. The modeled proteins were validated and subjected to molecular docking analysis. Molecular evidence of stable complex of EDS1:PAD4 in grape supporting SA defense pathway in response to biotic stress is reported in this study. If SA defense pathway genes are explored, then markers of genes involved can play pivotal role in grape variety development especially against biotic stress leading to higher productivity.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Hidrolasas de Éster Carboxílico/química , Proteínas de Unión al ADN/química , Simulación de Dinámica Molecular , Ácido Salicílico/química , Vitis/química , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Unión al ADN/metabolismo , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ácido Salicílico/metabolismo , Alineación de Secuencia , Transducción de Señal , Electricidad Estática , Estrés Fisiológico , Homología Estructural de Proteína , Termodinámica , Vitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA