Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
ACS Nano ; 17(20): 20179-20193, 2023 10 24.
Article En | MEDLINE | ID: mdl-37791900

Single-molecule fluorescence imaging experiments generally require sub-nanomolar protein concentrations to isolate single protein molecules, which makes such experiments challenging in live cells due to high intracellular protein concentrations. Here, we show that single-molecule observations can be achieved in live cells through a drastic reduction in the observation volume using overmilled zero-mode waveguides (ZMWs- subwavelength-size holes in a metal film). Overmilling of the ZMW in a palladium film creates a nanowell of tunable size in the glass layer below the aperture, which cells can penetrate. We present a thorough theoretical and experimental characterization of the optical properties of these nanowells over a wide range of ZMW diameters and overmilling depths, showing an excellent signal confinement and a 5-fold fluorescence enhancement of fluorescent molecules inside nanowells. ZMW nanowells facilitate live-cell imaging as cells form stable protrusions into the nanowells. Importantly, the nanowells greatly reduce the cytoplasmic background fluorescence, enabling the detection of individual membrane-bound fluorophores in the presence of high cytoplasmic expression levels, which could not be achieved with TIRF microscopy. Zero-mode waveguide nanowells thus provide great potential to study individual proteins in living cells.


Microscopy , Nanotechnology , Nanotechnology/methods , Single Molecule Imaging , Spectrometry, Fluorescence/methods
2.
Nat Microbiol ; 8(11): 2115-2129, 2023 Nov.
Article En | MEDLINE | ID: mdl-37814072

Antiviral signalling, which can be activated in host cells upon virus infection, restricts virus replication and communicates infection status to neighbouring cells. The antiviral response is heterogeneous, both quantitatively (efficiency of response activation) and qualitatively (transcribed antiviral gene set). To investigate the basis of this heterogeneity, we combined Virus Infection Real-time IMaging (VIRIM), a live-cell single-molecule imaging method, with real-time readouts of the dsRNA sensing pathway to analyse the response of human cells to encephalomyocarditis virus (EMCV) infection. We find that cell-to-cell heterogeneity in viral replication rates early in infection affect the efficiency of antiviral response activation, with lower replication rates leading to more antiviral response activation. Furthermore, we show that qualitatively distinct antiviral responses can be linked to the strength of the antiviral signalling pathway. Our analyses identify variation in early viral replication rates as an important parameter contributing to heterogeneity in antiviral response activation.


Virus Diseases , Virus Replication , Humans , Signal Transduction , Encephalomyocarditis virus/physiology , Antiviral Agents
3.
Elife ; 112022 02 01.
Article En | MEDLINE | ID: mdl-35103592

Accurate control of the cell cycle is critical for development and tissue homeostasis, and requires precisely timed expression of many genes. Cell cycle gene expression is regulated through transcriptional and translational control, as well as through regulated protein degradation. Here, we show that widespread and temporally controlled mRNA decay acts as an additional mechanism for gene expression regulation during the cell cycle in human cells. We find that two waves of mRNA decay occur sequentially during the mitosis-to-G1 phase transition, and we identify the deadenylase CNOT1 as a factor that contributes to mRNA decay during this cell cycle transition. Collectively, our data show that, akin to protein degradation, scheduled mRNA decay helps to reshape cell cycle gene expression as cells move from mitosis into G1 phase.


Cell Cycle/genetics , Cell Cycle/physiology , RNA Stability/physiology , Cell Line , Gene Expression Regulation , HEK293 Cells , Humans , Sequence Analysis, RNA , Transcription Factors/metabolism
6.
Adv Drug Deliv Rev ; 174: 250-264, 2021 07.
Article En | MEDLINE | ID: mdl-33894328

RNA-based therapeutics are highly promising for the treatment of numerous diseases, by their ability to tackle the genetic origin in multiple possible ways. RNA molecules are, however, incapable of crossing cell membranes, hence a safe and efficient delivery vehicle is pivotal. Extracellular vesicles (EVs) are endogenously derived nano-sized particles and possess several characteristics which make them excellent candidates as therapeutic RNA delivery agent. This includes the inherent capability to functionally transfer RNAs in a selective manner and an enhanced safety profile compared to synthetic particles. Nonetheless, the fundamental mechanisms underlying this selective inter- and intracellular trafficking and functional transfer of RNAs by EVs are poorly understood. Improving our understanding of these systems is a key element of working towards an EV-based or EV-mimicking system for the functional delivery of therapeutic RNA. In this review, state-of-the-art approaches to detect and visualize RNA in situ and in live cells are discussed, as well as strategies to assess functional RNA transfer, highlighting their potential in studying EV-RNA trafficking mechanisms.


Extracellular Vesicles/metabolism , Gene Transfer Techniques , RNA/administration & dosage , Animals , Biological Transport , Genetic Therapy/methods , Humans , Nanoparticles , RNA/metabolism
7.
J Cell Biol ; 220(2)2021 02 01.
Article En | MEDLINE | ID: mdl-33465779

CRISPR (clustered regularly interspaced short palindromic repeats)-based gene inactivation provides a powerful means for linking genes to particular cellular phenotypes. CRISPR-based screening typically uses large genomic pools of single guide RNAs (sgRNAs). However, this approach is limited to phenotypes that can be enriched by chemical selection or FACS sorting. Here, we developed a microscopy-based approach, which we name optical enrichment, to select cells displaying a particular CRISPR-induced phenotype by automated imaging-based computation, mark them by photoactivation of an expressed photoactivatable fluorescent protein, and then isolate the fluorescent cells using fluorescence-activated cell sorting (FACS). A plugin was developed for the open source software µManager to automate the phenotypic identification and photoactivation of cells, allowing ∼1.5 million individual cells to be screened in 8 h. We used this approach to screen 6,092 sgRNAs targeting 544 genes for their effects on nuclear size regulation and identified 14 bona fide hits. These results present a scalable approach to facilitate imaging-based pooled CRISPR screens.


CRISPR-Cas Systems/genetics , Genetic Testing , Imaging, Three-Dimensional , Cell Line , Cell Nucleus/genetics , Cell Nucleus Size/genetics , Flow Cytometry , Green Fluorescent Proteins/metabolism , Humans , Optics and Photonics , Phenotype
8.
Cell ; 183(7): 1930-1945.e23, 2020 12 23.
Article En | MEDLINE | ID: mdl-33188777

RNA viruses are among the most prevalent pathogens and are a major burden on society. Although RNA viruses have been studied extensively, little is known about the processes that occur during the first several hours of infection because of a lack of sensitive assays. Here we develop a single-molecule imaging assay, virus infection real-time imaging (VIRIM), to study translation and replication of individual RNA viruses in live cells. VIRIM uncovered a striking heterogeneity in replication dynamics between cells and revealed extensive coordination between translation and replication of single viral RNAs. Furthermore, using VIRIM, we identify the replication step of the incoming viral RNA as a major bottleneck of successful infection and identify host genes that are responsible for inhibition of early virus replication. Single-molecule imaging of virus infection is a powerful tool to study virus replication and virus-host interactions that may be broadly applicable to RNA viruses.


Protein Biosynthesis , RNA Viruses/physiology , Virus Replication/physiology , Cell Line, Tumor , Cell Survival , HEK293 Cells , Host-Pathogen Interactions , Humans , Interferons/metabolism , RNA Transport , RNA, Viral/genetics , Reproducibility of Results , Single Molecule Imaging , Time Factors
9.
Mol Cell ; 79(1): 191-198.e3, 2020 07 02.
Article En | MEDLINE | ID: mdl-32619469

We recently used CRISPRi/a-based chemical-genetic screens and cell biological, biochemical, and structural assays to determine that rigosertib, an anti-cancer agent in phase III clinical trials, kills cancer cells by destabilizing microtubules. Reddy and co-workers (Baker et al., 2020, this issue of Molecular Cell) suggest that a contaminating degradation product in commercial formulations of rigosertib is responsible for the microtubule-destabilizing activity. Here, we demonstrate that cells treated with pharmaceutical-grade rigosertib (>99.9% purity) or commercially obtained rigosertib have qualitatively indistinguishable phenotypes across multiple assays. The two formulations have indistinguishable chemical-genetic interactions with genes that modulate microtubule stability, both destabilize microtubules in cells and in vitro, and expression of a rationally designed tubulin mutant with a mutation in the rigosertib binding site (L240F TUBB) allows cells to proliferate in the presence of either formulation. Importantly, the specificity of the L240F TUBB mutant for microtubule-destabilizing agents has been confirmed independently. Thus, rigosertib kills cancer cells by destabilizing microtubules, in agreement with our original findings.


Antineoplastic Agents/pharmacology , Cell Proliferation , Glycine/analogs & derivatives , Microtubules/drug effects , Neoplasms/pathology , Pharmaceutical Preparations/metabolism , Sulfones/pharmacology , Tubulin/metabolism , Cells, Cultured , Crystallography, X-Ray , Drug Contamination , Glycine/pharmacology , Humans , Mutation , Neoplasms/drug therapy , Neoplasms/metabolism , Pharmaceutical Preparations/chemistry , Protein Conformation , Tubulin/chemistry , Tubulin/genetics
10.
Nat Struct Mol Biol ; 27(9): 790-801, 2020 09.
Article En | MEDLINE | ID: mdl-32661421

Small interfering RNAs (siRNAs) promote RNA degradation in a variety of processes and have important clinical applications. siRNAs direct cleavage of target RNAs by guiding Argonaute2 (AGO2) to its target site. Target site accessibility is critical for AGO2-target interactions, but how target site accessibility is controlled in vivo is poorly understood. Here, we use live-cell single-molecule imaging in human cells to determine rate constants of the AGO2 cleavage cycle in vivo. We find that the rate-limiting step in mRNA cleavage frequently involves unmasking of target sites by translating ribosomes. Target site masking is caused by heterogeneous intramolecular RNA-RNA interactions, which can conceal target sites for many minutes in the absence of translation. Our results uncover how dynamic changes in mRNA structure shape AGO2-target recognition, provide estimates of mRNA folding and unfolding rates in vivo, and provide experimental evidence for the role of mRNA structural dynamics in control of mRNA-protein interactions.


Argonaute Proteins/metabolism , RNA, Messenger/metabolism , Cell Line , HEK293 Cells , Humans , Nucleic Acid Conformation , RNA Cleavage , RNA Folding , RNA, Messenger/chemistry , Ribosomes/metabolism
11.
Trends Cell Biol ; 30(8): 606-618, 2020 08.
Article En | MEDLINE | ID: mdl-32461030

During mRNA translation, the genetic information stored in mRNA is translated into a protein sequence. It is imperative that the genetic information is translated with high precision. Surprisingly, however, recent experimental evidence has demonstrated that translation can be highly heterogeneous, even among different mRNA molecules derived from a single gene in an individual cell; multiple different polypeptides can be produced from a single mRNA molecule and the rate of translation can vary in both space and time. However, whether translational heterogeneity serves an important cellular function, or rather predominantly represents gene expression 'noise' remains an open question. In this review, we discuss the molecular basis and potential functions of such translational heterogeneity.


Protein Biosynthesis/genetics , RNA, Messenger/genetics , Amino Acid Sequence , Animals , Humans , Models, Biological , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribosomes/metabolism
12.
Science ; 367(6482): 1151-1156, 2020 03 06.
Article En | MEDLINE | ID: mdl-32139547

The regulation of messenger RNA levels in mammalian cells can be achieved by the modulation of synthesis and degradation rates. Metabolic RNA-labeling experiments in bulk have quantified these rates using relatively homogeneous cell populations. However, to determine these rates during complex dynamical processes, for instance during cellular differentiation, single-cell resolution is required. Therefore, we developed a method that simultaneously quantifies metabolically labeled and preexisting unlabeled transcripts in thousands of individual cells. We determined synthesis and degradation rates during the cell cycle and during differentiation of intestinal stem cells, revealing major regulatory strategies. These strategies have distinct consequences for controlling the dynamic range and precision of gene expression. These findings advance our understanding of how individual cells in heterogeneous populations shape their gene expression dynamics.


RNA Stability , RNA, Messenger/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcription, Genetic , Animals , Humans , Indicators and Reagents/chemistry , K562 Cells , Mice , Uridine/analogs & derivatives
13.
Nat Protoc ; 15(4): 1371-1398, 2020 04.
Article En | MEDLINE | ID: mdl-32076351

mRNA translation is a key step in gene expression. Proper regulation of translation efficiency ensures correct protein expression levels in the cell, which is essential to cell function. Different methods used to study translational control in the cell rely on population-based assays that do not provide information about translational heterogeneity between cells or between mRNAs of the same gene within a cell, and generally provide only a snapshot of translation. To study translational heterogeneity and measure translation dynamics, we have developed microscopy-based methods that enable visualization of translation of single mRNAs in live cells. These methods consist of a set of genetic tools, an imaging-based approach and sophisticated computational tools. Using the translation imaging method, one can investigate many new aspects of translation in single living cells, such as translation start-site selection, 3'-UTR (untranslated region) translation and translation-coupled mRNA decay. Here, we describe in detail how to perform such experiments, including reporter design, cell line generation, image acquisition and analysis. This protocol also provides a detailed description of the image analysis pipeline and computational modeling that will enable non-experts to correctly interpret fluorescence measurements. The protocol takes 2-4 d to complete (after cell lines expressing all required transgenes have been generated).


Image Processing, Computer-Assisted/methods , Protein Biosynthesis/genetics , RNA, Messenger/analysis , Single Molecule Imaging/methods , HEK293 Cells , Humans , RNA, Messenger/genetics
14.
Nat Methods ; 16(9): 862-865, 2019 09.
Article En | MEDLINE | ID: mdl-31471614

Fluorogenic RNA aptamers bind and activate the fluorescence of otherwise nonfluorescent dyes. However, fluorogenic aptamers are limited by the small number of fluorogenic dyes suitable for use in live cells. In this communication, fluorogenic proteins whose fluorescence is activated by RNA aptamers are described. Fluorogenic proteins are highly unstable until they bind RNA aptamers inserted into messenger RNAs, resulting in fluorescent RNA-protein complexes that enable live imaging of mRNA in living cells.


Aptamers, Nucleotide/metabolism , Fluorescence , Fluorescent Dyes/chemistry , Microscopy, Fluorescence/methods , Molecular Imaging/methods , RNA, Messenger/analysis , Aptamers, Nucleotide/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , HEK293 Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism
15.
Cell ; 178(2): 458-472.e19, 2019 07 11.
Article En | MEDLINE | ID: mdl-31178119

mRNA translation is a key step in decoding genetic information. Genetic decoding is surprisingly heterogeneous because multiple distinct polypeptides can be synthesized from a single mRNA sequence. To study translational heterogeneity, we developed the MoonTag, a fluorescence labeling system to visualize translation of single mRNAs. When combined with the orthogonal SunTag system, the MoonTag enables dual readouts of translation, greatly expanding the possibilities to interrogate complex translational heterogeneity. By placing MoonTag and SunTag sequences in different translation reading frames, each driven by distinct translation start sites, start site selection of individual ribosomes can be visualized in real time. We find that start site selection is largely stochastic but that the probability of using a particular start site differs among mRNA molecules and can be dynamically regulated over time. This study provides key insights into translation start site selection heterogeneity and provides a powerful toolbox to visualize complex translation dynamics.


Fluorescent Dyes/chemistry , RNA, Messenger/metabolism , Single Molecule Imaging/methods , 3' Untranslated Regions , 5' Untranslated Regions , Cell Line, Tumor , Genes, Reporter , HEK293 Cells , Humans , Peptide Chain Initiation, Translational , RNA, Messenger/chemistry , Ribosomes/metabolism , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology
16.
Mol Cell ; 75(2): 324-339.e11, 2019 07 25.
Article En | MEDLINE | ID: mdl-31155380

Nonsense-mediated decay (NMD) is a surveillance system that degrades mRNAs containing a premature termination codon (PTC) and plays important roles in protein homeostasis and disease. The efficiency of NMD is variable, impacting the clinical outcome of genetic mutations. However, limited resolution of bulk analyses has hampered the study of NMD efficiency. Here, we develop an assay to visualize NMD of individual mRNA molecules in real time. We find that NMD occurs with equal probability during each round of translation of an mRNA molecule. However, this probability is variable and depends on the exon sequence downstream of the PTC, the PTC-to-intron distance, and the number of introns both upstream and downstream of the PTC. Additionally, a subpopulation of mRNAs can escape NMD, further contributing to variation in NMD efficiency. Our study uncovers real-time dynamics of NMD, reveals key mechanisms that influence NMD efficiency, and provides a powerful method to study NMD.


Codon, Nonsense/genetics , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , Codon, Nonsense/chemistry , Exons/genetics , Humans , Introns/genetics , Mutation/genetics , RNA Stability/genetics , RNA, Messenger/chemistry , Single Molecule Imaging
17.
Methods Mol Biol ; 1649: 385-404, 2018.
Article En | MEDLINE | ID: mdl-29130212

mRNA translation is a key step in decoding the genetic information stored in DNA. Regulation of translation efficiency contributes to gene expression control and is therefore important for cell fate and function. Here, we describe a recently developed microscopy-based method that allows for visualization of translation of single mRNAs in live cells. The ability to measure translation dynamics of single mRNAs will enable a better understanding of spatiotemporal control of translation, and will provide unique insights into translational heterogeneity of different mRNA molecules in single cells.


Protein Biosynthesis , RNA, Messenger/metabolism , Single Molecule Imaging/methods , Cell Line , Cell Survival , Fluorescence , Green Fluorescent Proteins/metabolism , Humans , Image Processing, Computer-Assisted , RNA, Messenger/genetics , Ribosomes/metabolism , Single-Chain Antibodies/metabolism
18.
Mol Cell ; 68(1): 210-223.e6, 2017 Oct 05.
Article En | MEDLINE | ID: mdl-28985505

Chemical libraries paired with phenotypic screens can now readily identify compounds with therapeutic potential. A central limitation to exploiting these compounds, however, has been in identifying their relevant cellular targets. Here, we present a two-tiered CRISPR-mediated chemical-genetic strategy for target identification: combined genome-wide knockdown and overexpression screening as well as focused, comparative chemical-genetic profiling. Application of these strategies to rigosertib, a drug in phase 3 clinical trials for high-risk myelodysplastic syndrome whose molecular target had remained controversial, pointed singularly to microtubules as rigosertib's target. We showed that rigosertib indeed directly binds to and destabilizes microtubules using cell biological, in vitro, and structural approaches. Finally, expression of tubulin with a structure-guided mutation in the rigosertib-binding pocket conferred resistance to rigosertib, establishing that rigosertib kills cancer cells by destabilizing microtubules. These results demonstrate the power of our chemical-genetic screening strategies for pinpointing the physiologically relevant targets of chemical agents.


Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Genetic Testing/methods , Glycine/analogs & derivatives , Microtubules/drug effects , Sulfones/pharmacology , Tubulin Modulators/pharmacology , Tubulin/genetics , Antineoplastic Agents/chemistry , CRISPR-Cas Systems , Colchicine/pharmacology , Drug Resistance, Neoplasm , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glycine/chemistry , Glycine/pharmacology , HeLa Cells , Humans , K562 Cells , Kinesins/genetics , Kinesins/metabolism , Lentivirus/genetics , Lentivirus/metabolism , Microtubules/metabolism , Microtubules/ultrastructure , Mutation , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Small Molecule Libraries/pharmacology , Sulfones/chemistry , Tubulin/chemistry , Tubulin/metabolism , Tubulin Modulators/chemistry , Vinblastine/pharmacology
19.
Traffic ; 18(10): 658-671, 2017 10.
Article En | MEDLINE | ID: mdl-28731566

The kinesin family proteins are often studied as prototypical molecular motors; a deeper understanding of them can illuminate regulation of intracellular transport. It is typically assumed that they function identically. Here we find that this assumption of homogeneous function appears incorrect: variation among motors' velocities in vivo and in vitro is larger than the stochastic variation expected for an ensemble of "identical" motors. When moving on microtubules, slow and fast motors are persistently slow, and fast, respectively. We develop theory that provides quantitative criteria to determine whether the observed single-molecule variation is too large to be generated from an ensemble of identical molecules. To analyze such heterogeneity, we group traces into homogeneous sub-ensembles. Motility studies varying the temperature, pH and glycerol concentration suggest at least 2 distinct functional states that are independently affected by external conditions. We end by investigating the functional ramifications of such heterogeneity through Monte-Carlo multi-motor simulations.


Drosophila Proteins/metabolism , Kinesins/metabolism , Molecular Dynamics Simulation , Animals , Cell Line, Tumor , Drosophila , Drosophila Proteins/chemistry , Humans , Kinesins/chemistry , Motion , Protein Domains
20.
Chromosoma ; 126(4): 473-486, 2017 08.
Article En | MEDLINE | ID: mdl-27354041

Inhibition of the microtubule (MT) motor protein Eg5 results in a mitotic arrest due to the formation of monopolar spindles, making Eg5 an attractive target for anti-cancer therapies. However, Eg5-independent pathways for bipolar spindle formation exist, which might promote resistance to treatment with Eg5 inhibitors. To identify essential components for Eg5-independent bipolar spindle formation, we performed a genome-wide siRNA screen in Eg5-independent cells (EICs). We find that the kinase Aurora A and two kinesins, MCAK and Kif18b, are essential for bipolar spindle assembly in EICs and in cells with reduced Eg5 activity. Aurora A promotes bipolar spindle assembly by phosphorylating Kif15, hereby promoting Kif15 localization to the spindle. In turn, MCAK and Kif18b promote bipolar spindle assembly by destabilizing the astral MTs. One attractive way to interpret our data is that, in the absence of MCAK and Kif18b, excessive astral MTs generate inward pushing forces on centrosomes at the cortex that inhibit centrosome separation. Together, these data suggest a novel function for astral MTs in force generation on spindle poles and how proteins involved in regulating microtubule length can contribute to bipolar spindle assembly.


Aurora Kinase A/metabolism , Kinesins/metabolism , Microtubules , Spindle Apparatus , Genome-Wide Association Study , HeLa Cells , Humans , Microtubules/metabolism , Microtubules/ultrastructure , Mitosis , RNA, Small Interfering/genetics , Spindle Apparatus/metabolism
...