Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762599

RESUMEN

Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today's society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs-Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Esclerosis Amiotrófica Lateral/diagnóstico , Enfermedad de Alzheimer/diagnóstico , Microscopía de Fuerza Atómica , Células Sanguíneas
2.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108270

RESUMEN

Preeclampsia (PE) presents with maternal de novo hypertension and significant proteinuria and is one of the leading causes of maternal and perinatal morbidity and mortality with unknown etiology. The disease is associated with inflammatory vascular response and severe red blood cell (RBC) morphology changes. This study examined the nanoscopic morphological changes of RBCs from PE women versus normotensive healthy pregnant controls (PCs) and non-pregnant controls (NPCs) applying atomic force microscopy (AFM) imaging. The results revealed that the membrane of fresh PE RBCs differed significantly from healthy ones by the presence of invaginations and protrusions and an increased roughness value (Rrms) (4.7 ± 0.8 nm for PE vs. 3.8 ± 0.5 nm and 2.9 ± 0.4 nm for PCs and NPCs, respectively). PE-cells aging resulted in more pronounced protrusions and concavities, with exponentially increasing Rrms values, in contrast to the controls, where the Rrms parameter decreased linearly with time. The Rrms, evaluated on a 2 × 2 µm2 scanned area, for senescent PE cells (13 ± 2.0 nm) was significantly higher (p < 0.01) than that of PCs (1.5 ± 0.2 nm) and NPCs (1.9 ± 0.2 nm). Furthermore, the RBCs from PE patients appeared fragile, and often only ghosts were observed instead of intact cells at 20-30 days of aging. Oxidative-stress simulation on healthy cells led to RBC membrane features similar to those observed for PE cells. The results demonstrate that the most pronounced effects on RBCs in PE patients are related to impaired membrane homogeneity and strongly altered roughness values, as well as to vesiculation and ghost formation in the course of cell aging.


Asunto(s)
Preeclampsia , Embarazo , Humanos , Femenino , Microscopía de Fuerza Atómica/métodos , Preeclampsia/metabolismo , Longevidad , Eritrocitos , Membrana Eritrocítica/metabolismo
3.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36614231

RESUMEN

Discovery of diagnostic biomarkers for age-related neurodegenerative pathologies (NDDs) is essential for accurate diagnosis, following disease progression and drug development. Blood plasma and blood cells are important peripheral sources for NDDs' biomarkers that, although present in lower concentrations than in cerebrospinal fluid, would allow noninvasive diagnostics. To identify new biomarkers for Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), in this work we have evaluated the modifications in the thermodynamic behavior of blood plasma proteome exploring differential scanning calorimetry. The plasma thermodynamics reflected the complexity and heterogeneity of the two pathologies. The unfolding temperature of the most abundant plasma protein albumin and the weighted average center of the calorimetric profile appeared as the two thermodynamic signatures that reflected modifications of the plasma proteome, i.e., strong thermal stabilization of albumin and plasma proteins' interaction network, related to both pathologies. Based on those two signatures, both PD and ALS patients were stratified in two sets, except several cases with thermodynamic parameters that strongly differed from those of the calorimetric sets. Along with modifications of the plasma thermodynamic behavior, we found altered globulin levels in all PD and ALS patients' plasma (higher level of α- and ß-globulin fractions and lower level of γ-globulin fraction than the respective reference values) employing capillary electrophoresis. The presented results reveal the potential of calorimetry to indirectly identify NDDs' biomarkers in blood plasma.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedad de Parkinson , Humanos , Proteoma/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Biomarcadores/metabolismo , Plasma/metabolismo , Enfermedad de Parkinson/diagnóstico , Albúminas , Termodinámica
4.
Biomedicines ; 10(9)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36140340

RESUMEN

The imaging and force-distance curve modes of atomic force microscopy (AFM) are explored to compare the morphological and mechanical signatures of platelets from patients diagnosed with classical neurodegenerative diseases (NDDs) and healthy individuals. Our data demonstrate the potential of AFM to distinguish between the three NDDs-Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD), and normal healthy platelets. The common features of platelets in the three pathologies are reduced membrane surface roughness, area and height, and enhanced nanomechanics in comparison with healthy cells. These changes might be related to general phenomena associated with reorganization in the platelet membrane morphology and cytoskeleton, a key factor for all platelets' functions. Importantly, the platelets' signatures are modified to a different extent in the three pathologies, most significant in ALS, less pronounced in PD and the least in AD platelets, which shows the specificity associated with each pathology. Moreover, different degree of activation, distinct pseudopodia and nanocluster formation characterize ALS, PD and AD platelets. The strongest alterations in the biophysical properties correlate with the highest activation of ALS platelets, which reflect the most significant changes in their nanoarchitecture. The specific platelet signatures that mark each of the studied pathologies can be added as novel biomarkers to the currently used diagnostic tools.

5.
Cancers (Basel) ; 14(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36010876

RESUMEN

This review summarizes data obtained thus far on the application of differential scanning calorimetry (DSC) for the analysis of blood sera from patients diagnosed with multiple myeloma (MM) with the secretion of the most common isotypes of monoclonal proteins (M-proteins), free light chains (FLC) and non-secretory MM, as well as Waldenström macroglobulinemia and the premalignant state monoclonal gammopathy of undetermined significance. The heterogeneous nature of MM is reflected in the thermal stability profiles of the blood serum proteome of MM patients found to depend on both the level and the isotype of the secreted M-proteins or FLC. Common calorimetric markers feature the vast majority of the different myeloma types, i.e., stabilization of the major serum proteins and decrease in the albumin/globulin heat capacity ratio. A unique calorimetric fingerprint of FLC molecules forming amorphous aggregates is the low-temperature transition centered at 57 °C for a calorimetric set of FLC MM and at 46-47 °C for a single FLC MM case for which larger aggregates were formed. The calorimetric assay proved particularly advantageous for non-secretory MM and is thus a suitable tool for monitoring such patients during treatment courses. Thus, DSC provides a promising blood-based approach as a complementary tool for MM detection and monitoring.

6.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35562904

RESUMEN

Early pregnancy loss (EPL) is estimated to be between 15 and 20% of all adverse pregnancies. Approximately, half of EPL cases have no identifiable cause. Herein, we apply atomic force microscopy to evaluate the alteration of morphology and nanomechanics of erythrocytes from women with EPL with unknown etiology, as compared to healthy pregnant (PC) and nonpregnant women (NPC). Freshly isolated erythrocytes from women with EPL differ in both the roughness value (4.6 ± 0.3 nm, p < 0.05), and Young's modulus (2.54 ± 0.6 MPa, p < 0.01) compared to the values for NPC (3.8 ± 0.4 nm and 0.94 ± 0.2 MPa, respectively) and PC (3.3 ± 0.2 nm and 1.12 ± 0.3 MPa, respectively). Moreover, we find a time-dependent trend for the reduction of the cells' morphometric parameters (cells size and surface roughness) and the membrane elasticity­much faster for EPL than for the two control groups. The accelerated aging of EPL erythrocytes is expressed in faster morphological shape transformation and earlier occurrence of spiculated and spherical-shaped cells, reduced membrane roughness and elasticity with aging evolution. Oxidative stress in vitro contributed to the morphological cells' changes observed for EPL senescent erythrocytes. The ultrastructural characteristics of cells derived from women with miscarriages show potential as a supplementary mark for a pathological state.


Asunto(s)
Aborto Espontáneo , Aborto Espontáneo/patología , Módulo de Elasticidad , Elasticidad , Eritrocitos/patología , Femenino , Humanos , Microscopía de Fuerza Atómica , Embarazo
7.
Bioelectrochemistry ; 146: 108138, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35487144

RESUMEN

In order to elucidate the old, still unsolved problem of how the diffuse electric double layer responds to an abrupt, intramolecular charge displacement inside a biological membrane, we investigated the fastest components of the light-induced electric signals of bacteriorhodopsin and its mutants, in numerous ionic and buffer solutions. The obtained data for temperature and solute concentration dependence were interpreted as a consequence of changes in the capacity of the diffuse double layer surrounding the purple membrane. The possible physiological consequences of this so far not demonstrated phenomenon are discussed.


Asunto(s)
Bacteriorodopsinas , Luz , Bacteriorodopsinas/fisiología , Membrana Celular , Electricidad , Temperatura
8.
Biomolecules ; 11(10)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34680133

RESUMEN

The main trend of current research in neurodegenerative diseases (NDDs) is directed towards the discovery of novel biomarkers for disease diagnostics and progression. The pathological features of NDDs suggest that diagnostic markers can be found in peripheral fluids and cells. Herein, we investigated the thermodynamic behavior of the peripheral red blood cells (RBCs) derived from patients diagnosed with three common NDDs-Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS) and compared it with that of healthy individuals, evaluating both fresh and aged RBCs. We established that NDDs can be differentiated from the normal healthy state on the basis of the variation in the thermodynamic parameters of the unfolding of major RBCs proteins-the cytoplasmic hemoglobin (Hb) and the membrane Band 3 (B3) protein. A common feature of NDDs is the higher thermal stability of both Hb and B3 proteins along the RBCs aging, while the calorimetric enthalpy can distinguish PD from ALS and AD. Our data provide insights into the RBCs thermodynamic behavior in two complex and tightly related phenomena-neurodegenerative pathologies and aging, and it suggests that the determined thermodynamic parameters are fingerprints of the altered conformation of Hb and B3 protein and modified RBCs' aging in the studied NDDs.


Asunto(s)
Envejecimiento/sangre , Biomarcadores/sangre , Enfermedades Neurodegenerativas/sangre , Termodinámica , Envejecimiento/patología , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/patología , Eritrocitos/patología , Hemoglobinas/metabolismo , Humanos , Enfermedad de Huntington/sangre , Enfermedad de Huntington/patología , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/patología
9.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360543

RESUMEN

Pregnancy is associated with hypercoagulation states and increased thrombotic risk, especially in women with thrombophilia. We combine atomic force microscopy (AFM) and flow cytometry to examine the morphology and nanomechanics of platelets derived from women with early pregnancy loss (EPL) and control pregnant (CP) and non-pregnant (CNP) women. Both control groups exhibit similar morphometric parameters (height and surface roughness) and membrane stiffness of platelets. EPL patients' platelets, on the other hand, are more activated than the control groups, with prominent cytoskeletal rearrangement. In particular, reduced membrane roughness (22.9 ± 6 nm vs. 39.1 ± 8 nm) (p < 0.05) and height (692 ± 128 nm vs. 1090 ± 131 nm) (p < 0.05), strong alteration in the membrane Young modulus, increased production of platelets' microparticles, and higher expression of procoagulant surface markers, as well as increased occurrence of thrombophilia (FVL, FII20210A, PLA1/A2, MTHFR C677T or 4G/5G PAI-1) polymorphisms were found. We suggest that the carriage of thrombophilic mutations triggers structural and nanomechanical abnormalities in platelets, resulting in their increased activation. The activation state of platelets can be well characterized by AFM, and the morphometric and nanomechanical characteristics might serve as a new criterion for evaluation of the cause of miscarriage and offer the prospect of an innovative approach serving for diagnostic purposes.


Asunto(s)
Aborto Habitual/patología , Plaquetas/patología , Nanoestructuras/química , Polimorfismo Genético , Trombofilia/complicaciones , Aborto Habitual/etiología , Aborto Habitual/metabolismo , Adulto , Plaquetas/metabolismo , Estudios de Casos y Controles , Femenino , Humanos , Embarazo
10.
Int J Biol Macromol ; 175: 19-29, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33508363

RESUMEN

The interactions of graphene oxide (GO), a 2-dimensional nanomaterial with hydrophilic edges, hydrophobic basal plane and large flat surfaces, with biological macromolecules, are of key importance for the development of novel nanomaterials for biomedical applications. To gain more insight into the interaction of GO flakes with human serum albumin (HSA), we examined GO binding to HSA in its isolated state and in blood plasma. Calorimetric data reveal that GO strongly stabilizes free isolated HSA against a thermal challenge at low ionic strength, indicating strong binding interactions, confirmed by the drop in ζ-potential of the HSA/GO assemblies compared to bare GO flakes. However, calorimetry also revealed that the HSA-GO molecular interaction is hampered in blood plasma, the ionic strength being particularly important for the interactions. Molecular modelling calculations are in full concert with these experimental findings, indicating a considerably higher binding affinity for HSA to GO in its partially unfolded state, characteristic to low-ionic-strength environment, than for the native protein conformation, observed under physiological conditions. Therefore, for the first time we demonstrate an impeded interaction between HSA and GO nanoflakes in blood plasma, and suggest that the protein is protected from the plausible toxic effects of GO under native conditions.


Asunto(s)
Grafito/metabolismo , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Sitios de Unión , Calorimetría , Grafito/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulación del Acoplamiento Molecular , Plasma/química , Plasma/metabolismo , Unión Proteica , Conformación Proteica , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Espectrometría de Fluorescencia/métodos , Termodinámica
11.
Molecules ; 27(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35011452

RESUMEN

In recent years, numerous studies have shown that conversion of conventional drugs in ionic liquid (IL) formulation could be a successful strategy to improve their physicochemical properties or suggest a new route of administration. We report the synthesis and detailed characterization of eight salicylic acid-based ILs (SA-ILs) containing cation non-polar or aromatic amino acid esters. Using in vitro assays, we preliminary evaluated the therapeutic potency of the novel SA-ILs. We observed that conversion of the SA into ionic liquids led to a decrease in its cytotoxicity toward NIH/3T3 murine embryo fibroblasts and human HaCaT keratinocytes. It should be mentioned is that all amino acid alkyl ester salicylates [AAOR][SA] inhibit the production of the proinflammatory cytokine IL-6 in LPS-stimulated keratinocytes. Moreover, keratinocytes, pretreated with [PheOMe][SA] and [PheOPr][SA] seem to be protected from LPS-induced inflammation. Finally, the novel compounds exhibit a similar binding affinity to bovine serum albumin (BSA) as the parent SA, suggesting a similar pharmacokinetic profile. These preliminary results indicate that SA-ILs, especially those with [PheOMe], [PheOPr], and [ValOiPr] cation, have the potential to be further investigated as novel topical agents for chronic skin diseases such as psoriasis and acne vulgaris.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Composición de Medicamentos , Líquidos Iónicos/química , Ácido Salicílico/química , Ácido Salicílico/farmacología , Administración Cutánea , Animales , Antiinflamatorios/síntesis química , Línea Celular , Técnicas de Química Sintética , Enfermedad Crónica , Citocinas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ácido Salicílico/síntesis química , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/etiología , Solubilidad , Solventes , Termodinámica
12.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35008653

RESUMEN

Human red blood cells (RBCs) are unique cells with the remarkable ability to deform, which is crucial for their oxygen transport function, and which can be significantly altered under pathophysiological conditions. Here we performed ultrastructural analysis of RBCs as a peripheral cell model, looking for specific signatures of the neurodegenerative pathologies (NDDs)-Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD), utilizing atomic force (AFM) and conventional optical (OM) microscopy. We found significant differences in the morphology and stiffness of RBCs isolated from patients with the selected NDDs and those from healthy individuals. Neurodegenerative pathologies' RBCs are characterized by a reduced abundance of biconcave discoid shape, lower surface roughness and a higher Young's modulus, compared to healthy cells. Although reduced, the biconcave is still the predominant shape in ALS and AD cells, while the morphology of PD is dominated by crenate cells. The features of RBCs underwent a marked aging-induced transformation, which followed different aging pathways for NDDs and normal healthy states. It was found that the diameter, height and volume of the different cell shape types have different values for NDDs and healthy cells. Common and specific morphological signatures of the NDDs were identified.


Asunto(s)
Envejecimiento/patología , Eritrocitos/patología , Enfermedades Neurodegenerativas/patología , Adulto , Anciano , Anciano de 80 o más Años , Módulo de Elasticidad/fisiología , Recuento de Eritrocitos/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad
13.
Z Naturforsch C J Biosci ; 76(3-4): 129-140, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32975208

RESUMEN

Current plant-derived anticancer therapeutics aim to reach higher effectiveness, to potentiate chemosensitivity and minimize the toxic side effects compared to conventional chemotherapy. Cotinus coggygria Scop. is a herb with high pharmacological potential, widely applied in traditional phytotherapy. Our previous study revealed that leaf aqueous ethanolic extract from C. coggygria exerts in vitro anticancer activity on human breast, ovarian and cervical cancer cell lines. The objective of the present research was to investigate possible molecular mechanisms and targets of the antitumor activity of the extract in breast cancer MCF7 cells through analysis of cell cycle and apoptosis, clonogenic ability assessment, evaluation of the extract genotoxic capacity, characterization of cells thermodynamic properties, and analysis on the expression of genes involved in cellular epigenetic processes. The obtained results indicated that in MCF7 cells C. coggygria extract causes S phase cell cycle arrest and triggers apoptosis, reduces colony formation, induces DNA damage, affects cellular thermodynamic parameters, and tends to inhibit the relative expression of DNMT1, DNMT3a, MBD3, and p300. Further studies on the targeted molecules and the extract anti-breast cancer potential on animal experimental model system, need to be performed in the future.


Asunto(s)
Anacardiaceae/química , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Daño del ADN/efectos de los fármacos , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/genética , Epigénesis Genética/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Extractos Vegetales/química , Hojas de la Planta/química
14.
Eur Biophys J ; 48(5): 465-473, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30905045

RESUMEN

In this paper, the photocycle of the dried photoactive yellow protein film has been investigated in different humidity environments, in order to characterize its nonlinear optical properties for possible integrated optical applications. The light-induced spectral changes of the protein films were monitored by an optical multichannel analyser set-up, while the accompanying refractive index changes were measured with the optical waveguide lightmode spectroscopy method. To determine the number and kinetics of spectral intermediates in the photocycle, the absorption kinetic data were analysed by singular value decomposition and multiexponential fitting methods, whose results were used in a subsequent step of fitting a photocycle model to the data. The absorption signals of the films were found to be in strong correlation with the measured light-induced refractive index changes, whose size and kinetics imply that photoactive yellow protein may be a good alternative for utilization as an active nonlinear optical material in future integrated optical applications.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fenómenos Ópticos , Fotorreceptores Microbianos/metabolismo , Cinética , Análisis Espectral
15.
Carbohydr Polym ; 181: 78-85, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29254036

RESUMEN

Herein, a strong interdependence between the composition of hybrid graphene oxide/hyaluronan/chitosan GO/HA/Chi multilayers and their surface properties and biocompatibility was demonstrated that can be used to build up coatings with desirable and precisely tunable properties. Both the position and the abundance of GO-layers into the polymer matrix were systematically varied to draw interconnection with the growth type, thickness, morphology, roughness, hydrophilicity and biocompatibility. It was found that when deposited in-between the HA and Chi layers GO forms diffusion barrier, hindering the mobility of Chi-chains and changing the exponential film growth to linear. Incorporation of GO-layers into the biodegradable and highly hydrated HA/Chi matrix does not affect the final thickness, but has a dramatic impact on the surface morphology and roughness, which in turn tunes the hydrophilicity, protein adsorption and platelets adhesion. This provides an opportunity for various biomedical applications of the studied hybrid films as coatings with controllable surface properties.


Asunto(s)
Materiales Biocompatibles/química , Grafito/química , Nanocompuestos/química , Polisacáridos/química , Quitosano , Reactivos de Enlaces Cruzados/química , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Ácido Hialurónico , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Tecnicas de Microbalanza del Cristal de Cuarzo , Albúmina Sérica/metabolismo , Propiedades de Superficie , Agua/química
16.
Clin Appl Thromb Hemost ; 23(8): 951-960, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28081621

RESUMEN

Glycoprotein IIb/IIIa (GPIIb/IIIa) is the most abundant platelet surface receptor for fibrinogen and von Willebrand factor. Polymorphism PlA1/A2 in the gene of GPIIb/IIIa is among the risk factors for the development of arterial and venous thrombosis. The aim of this study is to evaluate the effect of the carriage of PlA1/A2 on the size, topographic features, and membrane stiffness of platelets from healthy controls and patients with deep venous thrombosis (DVT). Atomic force microscopy (AFM) imaging and nanoindentation (force-distance curves) were applied to investigate the morphological and nanomechanical properties (Young's modulus) of platelets immobilized on glass surface. The surface roughness ( Ra) and height ( h) of platelets from patients with DVT, carriers of mutant allele PlA2 ( Ra = 30.2 ± 6 nm; h = 766 ± 182 nm) and noncarriers ( Ra = 28.6 ± 6 nm; h = 865 ± 290 nm), were lower than those of healthy carriers of allele PlA2 ( Ra = 48.1 ± 12 nm; h = 1072 ± 338 nm) and healthy noncarriers ( Ra = 49.7 ± 14 nm; h = 1021 ± 433 nm), respectively. Platelets isolated from patients with DVT, both carriers and noncarriers, exhibit much higher degree of stiffness at the stage of spreading ( E = 327 ± 85 kPa and 341 ± 102 kPa, respectively) compared to healthy noncarriers ( E = 198 ± 50 kPa). In addition, more pronounced level of platelet activation was found in polymorphism carriers. In conclusion, the carriage of PlA2 allele modulates the activation state, morphology, and membrane elasticity of platelets.


Asunto(s)
Plaquetas , Integrina beta3 , Microscopía de Fuerza Atómica , Glicoproteína IIb de Membrana Plaquetaria , Polimorfismo Genético , Trombosis de la Vena , Adulto , Anciano , Alelos , Plaquetas/metabolismo , Plaquetas/ultraestructura , Módulo de Elasticidad , Femenino , Humanos , Integrina beta3/genética , Integrina beta3/metabolismo , Masculino , Persona de Mediana Edad , Glicoproteína IIb de Membrana Plaquetaria/genética , Glicoproteína IIb de Membrana Plaquetaria/metabolismo , Trombosis de la Vena/genética , Trombosis de la Vena/metabolismo , Trombosis de la Vena/patología
17.
Biochim Biophys Acta Gen Subj ; 1861(2): 409-417, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27751955

RESUMEN

BACKGROUND: Biological microcalorimetry has entered into a phase where its potential for disease diagnostics is readily recognized. A wide variety of oncological and immunological disorders have been characterized by differential scanning calorimetry (DSC) and characteristic thermodynamic profiles were reported. Now the challenge before DSC is not the experimental data collection but the development of analysis protocols for reliable data stratification/classification and discrimination of disease specific features (calorimetric markers). METHODS: In this work we apply InterCriteria Analysis (ICA) approach combined with Pearson's and Spearman's correlation analysis to a large dataset of calorimetric and biochemical parameters derived for the serum proteome of patients diagnosed with multiple myeloma (MM). RESULTS: We have identified intercriteria dependences that are general for the various types of MM and thus can be regarded as a characteristic of this largely heterogeneous disease: strong contribution of the monoclonal (M) protein concentration to the excess heat capacity of the immunoglobulins-assigned thermal transition; shift of the albumin assigned calorimetric transition to allocation where it overlaps with the globulins assigned transition and strong shift of the globulins assigned transition temperature attributable to M proteins conformational changes. CONCLUSIONS: Our data justify the applicability of ICA for deciphering of the complex thermodynamic behavior of the MM blood serum proteome. GENERAL SIGNIFICANCE: The applied approach is suitable for more general application in the analysis of biocalorimetric data since it can help identify the biological relevance of the distinguished thermodynamic features observed for variety of diseases.


Asunto(s)
Proteoma/metabolismo , Suero/metabolismo , Albúminas/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Rastreo Diferencial de Calorimetría/métodos , Globulinas/metabolismo , Calor , Humanos , Inmunoglobulinas/metabolismo , Mieloma Múltiple/sangre , Mieloma Múltiple/metabolismo , Proteínas de Mieloma/metabolismo , Temperatura de Transición
18.
Int J Biol Macromol ; 91: 560-7, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27268384

RESUMEN

The bacterial thymidylate synthase ThyX is a multisubstrate flavoenzyme that takes part in the de novo synthesis of thymidylate in a variety of microorganisms. Herein we study the effect of FAD and dUMP binding on the thermal stability of wild type (WT) ThyX from the mesophilic Paramecium bursaria chlorella virus-1 (PBCV-1) and from the thermophilic bacterium Thermotoga maritima (TmThyX), and from two variants of TmThyX, Y91F and S88W, using differential scanning calorimetry. The energetics underlying these processes was characterized by isothermal titration calorimetry. The PBCV-1 protein is significantly less stable against the thermal challenge than the TmThyX WT. FAD exerted stabilizing effect greater for PBCV-1 than for TmThyX and for both mutants, whereas binding of dUMP to FAD-loaded proteins stabilized further only TmThyX. Different thermodynamic signatures describe the FAD binding to the WT ThyX proteins. While TmThyX binds FAD with a low µM binding affinity in a process characterized by a favorable entropy change, the assembly of PBCV-1 with FAD is governed by a large enthalpy change opposed by an unfavorable entropy change resulting in a relatively strong nM binding. An enthalpy-driven formation of a high affinity ternary ThyX/FAD/dUMP complex was observed only for TmThyX.


Asunto(s)
Temperatura , Thermotoga maritima/enzimología , Timidilato Sintasa/metabolismo , Calorimetría , Rastreo Diferencial de Calorimetría , Coenzimas/metabolismo , Nucleótidos de Desoxiuracil/metabolismo , Estabilidad de Enzimas , Flavina-Adenina Dinucleótido/metabolismo , Proteínas Mutantes/metabolismo , Unión Proteica , Especificidad por Sustrato , Temperatura de Transición
19.
J Mater Chem B ; 4(44): 7092-7100, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-32263646

RESUMEN

Herein the optimization of the physicochemical properties and surface biocompatibility of polyelectrolyte multilayers of the natural, biocompatible and biodegradable, linear polysaccharides hyaluronan and chitosan by Hofmeister anions was systematically investigated. We demonstrated that there is an interconnection between the bulk and surface properties of HA/Chi multilayers both varying in accordance with the arrangement of the anions in the Hofmeister series. Kosmotropic anions increased the hydration, thickness, micro- and macro-roughness, and hydrophilicity and improved the biocompatibility of the films by reduction (2 orders of magnitude) of the films stiffness and complete anti-thrombogenicity.

20.
Langmuir ; 31(42): 11583-90, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26473578

RESUMEN

The major light-harvesting pigment-protein complex of photosystem II, LHCII, has a crucial role in the distribution of the light energy between the two photosystems, the efficient light capturing and protection of the reaction centers and antennae from overexcitation. In this work direct structural information on the effect of LHCII protonation, which mimics the switch from light-harvesting to photoprotective state of the protein, was revealed by polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). PM-IRRAS on LHCII monolayers verified that the native helical structure of the protein is preserved in both partly deprotonated (pH 7.8, LHCII) and protonated (pH 5.2, p-LHCII) states. At low surface pressure, 10 mN/m, the orientation of the α-helices in these two LHCII states is different-tilted (θ ≈ 40°) in LHCII and nearly vertical (θ ≈ 90°) in p-LHCII monolayers; the partly deprotonated complex is more hydrophilic than the protonated one and exhibits stronger intertrimer interactions. At higher surface pressure, 30 mN/m, which is typical for biological membranes, the protonation affects neither the secondary structure nor the orientation of the transmembrane α-helices (tilted ∼45° relative to the membrane surface in both LHCII states) but weakens the intermolecular interactions within and/or between the trimers.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema II/metabolismo , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...