Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Environ Manage ; 359: 121003, 2024 May.
Article En | MEDLINE | ID: mdl-38692032

Globally, most high-grade ores have already been exploited. Contemporary mining tends to focus on the extraction of lower-grade ores thereby leaving large stored tailings open to the environment. As a result, current mines have emerged as hotspots for the migration of metal(loid)s and resistance genes, thereby potentially contributing to a looming public health crisis. Therefore, the management and remediation of tailings are the most challenging issues in environmental ecology. Bioremediation, a cost-effective solution for the treatment of multi-element mixed pollution (co-contamination), shows promise for the restoration of mine tailings. This review focuses on the bioremediation technologies developed to untangle the issues of non-ferrous metal mine tailings. These technologies address the environmental risks of multi-element exposure to the ecosystem and human health risks. It provides a review and comparison of current bioremediation technologies used to mineralize metal(loid)s. The role of plant-microorganisms and their mechanisms in the remediation of tailings are also discussed. The importance of "treating waste with wastes" is crucial for advancing bioremediation technologies. This approach underscores the potential for waste materials to contribute to environmental cleanup processes. The concept of a circular economy is pertinent in this context, emphasizing recycling and reuse. There's an immediate need for international collaboration. Collaboration is needed in policy-making, funding, and data accessibility. Sharing data is essential for the growth of bioremediation globally.


Biodegradation, Environmental , Metals , Mining , Humans , Recycling
2.
J Environ Manage ; 353: 120167, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38308995

The quality of soil containing heavy metals (HMs) around nonferrous metal mining areas is often not favorable for plant growth. Three types of plant growth promoting rhizobacteria (PGPR)-assisted ryegrass were examined here to treat Cd, Pb, and Zn contaminated soil collected from a nonferrous metal smelting facility. The effects of PGPR-assisted plants on soil quality, plant growth, and the migration and transformation of HMs were evaluated. Results showed that inter-root inoculation of PGPR to ryegrass increased soil redox potential, urease, sucrase and acid phosphatase activities, microbial calorimetry, and bioavailable P, Si, and K content. Inoculation with PGPR also increased aboveground parts and root length, P, Si, and K contents, and antioxidant enzyme activities. The most significant effect was that the simultaneous inoculation of all three PGPRs increased the ryegrass extraction (%) of Cd (59.04-79.02), Pb (105.56-157.13), and Zn (27.71-40.79), compared to CK control (without fungi). Correspondingly, the inter-root soil contents (%) of total Cd (39.94-57.52), Pb (37.59-42.17), and Zn (34.05-37.28) were decreased compared to the CK1 control (without fungi and plants), whereas their bioavailability was increased. Results suggest that PGPR can improve soil quality in mining areas, promote plant growth, transform the fraction of HMs in soil, and increase the extraction of Cd, Pb, and Zn by ryegrass. PGPR is a promising microbe-assisted phytoremediation strategy that can promote the re-greening of vegetation in the mining area while remediating HMs pollution.


Lolium , Metals, Heavy , Soil Pollutants , Cadmium , Lead , Symbiosis , Soil/chemistry , Metals, Heavy/analysis , Bacteria , Biodegradation, Environmental , Zinc , Soil Pollutants/analysis
3.
Sci Total Environ ; 827: 154216, 2022 Jun 25.
Article En | MEDLINE | ID: mdl-35247412

In this study, a highly efficient phosphate-solubilizing bacteria (PSB) (Pantoea sp. grinm-12) was screened out from uranium (U) tailings, and the carbon and nitrogen sources of mixed culture with sulfate-reducing bacteria (SRB) were optimized. Results showed that the functional expression of SRB-PSB could be promoted effectively when glucose + sodium lactate was used as carbon source and ammonium nitrate + ammonium sulfate as nitrogen source. The concentration of PO43- in the culture system could reach 107.27 mg·L-1, and the sulfate reduction rate was 81.72%. In the process of biological stabilization of U tailings by mixed SRB-PSB culture system, the chemical form of U in the remediation group was found to transfer to stable state with the extension of remediation time, which revealed the effectiveness of bioremediation on the harmless treatment of U tailings. XRD, FT-IR, SEM-EDS, high-throughput sequencing, and metagenomics were also used to assist in revealing the microstructure and composition changes during the biological stabilization process, and explore the microbial community/functional gene response. Finally, the stabilization mechanism of U was proposed. In conclusion, the stabilization of U in U tailings was realized through the synergistic effect of bio-reduction, bio-precipitation, and bio-adsorption.


Desulfovibrio , Uranium , Bacteria/metabolism , Carbon/metabolism , Desulfovibrio/metabolism , Nitrogen/metabolism , Phosphates/metabolism , Spectroscopy, Fourier Transform Infrared , Sulfates/chemistry , Uranium/analysis
4.
Front Microbiol ; 12: 770206, 2021.
Article En | MEDLINE | ID: mdl-34966366

Uranium pollution in tailings and its decay products is a global environmental problem. It is of great significance to use economical and efficient technologies to remediate uranium-contaminated soil. In this study, the effects of pH, temperature, and inoculation volume on stabilization efficiency and microbial community response of uranium tailings were investigated by a single-factor batch experiment in the remediation process by mixed sulfate-reducing bacteria (SRB) and phosphate-solubilizing bacteria (PSB, Pantoea sp. grinm-12). The results showed that the optimal parameters of microbial stabilization by mixed SRB-PSB were pH of 5.0, temperature of 25°C, and inoculation volume of 10%. Under the optimal conditions, the uranium in uranium tailings presented a tendency to transform from the acid-soluble state to residual state. In addition, the introduction of exogenous SRB-PSB can significantly increase the richness and diversity of endogenous microorganisms, effectively maintain the reductive environment for the microbial stabilization system, and promote the growth of functional microorganisms, such as sulfate-reducing bacteria (Desulfosporosinus and Desulfovibrio) and iron-reducing bacteria (Geobacter and Sedimentibacter). Finally, PCoA and CCA analyses showed that temperature and inoculation volume had significant effects on microbial community structure, and the influence order of the three environmental factors is as follows: inoculation volume > temperature > pH. The outcomes of this study provide theoretical support for the control of uranium in uranium-contaminated sites.

5.
Front Microbiol ; 12: 676391, 2021.
Article En | MEDLINE | ID: mdl-34326819

The remediation of uranium (U) through phosphate-solubilizing bacteria (PSB) is an emerging technique as well as an interesting phenomenon for transforming mobile U into stable minerals in the environment. While studies are well needed for in-depth understanding of the mechanism of U(VI) immobilization by PSB. In this study, two PSB were isolated from a U-tailing repository site. These bacterial strains (ZJ-1 and ZJ-3) were identified as Bacillus spp. by the sequence analysis of 16S ribosomal RNA (rRNA) genes. Incubation of PSB in liquid medium showed that the isolate ZJ-3 could solubilize more than 230 mg L-1 P from glycerol-3-phosphate and simultaneously removed over 70% of 50 mg L-1 U(VI) within 1 h. During this process, the rapid appearance of yellow precipitates was observed. The microscopic and spectroscopic analysis demonstrated that the precipitates were associated with U-phosphate compound in the form of saleeite-like substances. Besides, scanning electron microscopy coupled with energy-dispersive X-ray (SEM-EDS) and Fourier transform infrared spectroscopy (FTIR) analysis of the precipitates confirmed that the extracellular polymeric substances (EPS) might also play a key role in U sequestration. Furthermore, SEM and FTIR analysis revealed that part of U(VI) was adsorbed on the bacterial surface through cellular phosphate, hydroxy, carboxyl, and amide groups. This study provides new insights into the synergistic strategies enhancing U immobilization rates by Bacillus spp. that uses glycerol-3-phosphate as the phosphorus source, the process of which contributes to harmful pollutant biodegradation.

6.
Environ Sci Pollut Res Int ; 28(18): 22359-22371, 2021 May.
Article En | MEDLINE | ID: mdl-33417128

Bioremediation of Cr(VI) by microorganisms has attracted immense research interests. There are three different mechanisms for bioremediation of Cr(VI): biosorption, bioreduction, and biomineralization. Identifying the relative contributions of these different mechanisms to Cr(VI) bioremediation can provide valuable information to enhance the final result. This article explores the corresponding contributions of different mechanisms in the Cr(VI) bioremediation process. To obtain a deeper understanding of each bioremediation mechanism, the corresponding precipitation products were analyzed via different methods. Fourier transform infrared spectrometer (FTIR) analysis showed that Cr(VI) was adsorbed by functional groups in EPS to form a chelate compound. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis determined that the stable Cr(III) compounds and mineral crystals which contain chromium gradually formed during the bioremediation process. High-throughput sequencing technology was applied to monitor microbial community succession. The results showed that the total removal rate of Cr(VI) reached 77.64% in 56 days in 100 mg/L Cr(VI). Bioreduction was the major contributor to the final result, followed by biosorption and biomineralization; their proportions are 69.61%, 19.16%, and 11.23%, respectively. Besides, the high-throughput sequencing data indicated that reductive microorganisms were the dominant flora and that the relative abundance of different reductive microorganism types changes significantly. This work has clarified the contributions of different mechanisms during Cr(VI) bioremediation process and provided a new enhancement strategy for Cr(VI) bioremediation.Graphical abstract.


Biomineralization , Chromium , Biodegradation, Environmental , Chromium/analysis , Oxidation-Reduction , X-Ray Diffraction
...